• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Formulaire
 

Formulaire

on

  • 2,108 views

 

Statistics

Views

Total Views
2,108
Views on SlideShare
2,108
Embed Views
0

Actions

Likes
0
Downloads
146
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Formulaire Formulaire Document Transcript

    • Rappels: LOIS ET PRINCIPES OBJECTIFS : - Connaître les différentes lois d’électrotechnique nécessaires pour étudier les circuits alimentées en courant continu ou alternatif.1) Travail / énergie : W Déplacement d’une charge dans le sens de la force : d F charge F = 20N d = 25cm Travail ? J N mW = travail (ou énergie) en joule Rép : W = 5JF = Force en Newtond = distance en mètre La force ne s’exerce pas dans le sens du déplacement : F d α F = 20N α = 45° charge d = 50cm Travail ? Rép : W = 7,07J J N m Force dans un mouvement de rotation : F Le moment du couple exercé D vaut : T=F.D F F = 20N θ = ½ tr D = 20cm Travail ? J N.m rd Rép : W = 12,57J θ est l’angle décrit en radian 1
    • Les angles s’expriment en degré ou en radian : 2π 360 ° Il faut savoir convertir les angles de degré en radian ou l’inverse et connaître les angles remarquables.α en degré 0° 30° 45° 60° 90° 120° 180° 360°α en radian 0 π/6 π/4 π/3 π/2 2π/3 π 2π L’angle 6π équivaut à 3 fois 360° ou 3 tours !2) Puissance mécanique P / rendement η : La puissance P : W = 6000J t = 5’ Puissance ?P = puissance en Watt (W) Rép : P= 20WW = énergie en joule (J)t = temps en seconde (s) Dans une rotation, par exemple un moteur : Ω=2πnP = puissance mécanique en Watt (W)T = le couple en Newton par mètre (N.m)Ω= vitesse angulaire en radian par seconde (rd/s) Le rendement d’une machine, η nombre sans unité et toujours < à 1 ! Pu = 800W pertes= 200W avec Pa = Pu + pertes rendement?Pa = puissance absorbée en W (à l’entrée) Rép : η= 0,8Pu = puissance utile en W (à la sortie)3) Intensité I / tension U : L’intensité d’un courant électrique I est la quantité d’électricité Q transporté dans un circuit. Cela représente un débit électrique ! I = intensité du courant an ampère (A) Q = quantité d’électricité en coulomb (c) ou ampères- heures Ah t = temps en secondes (s) ou heures (h) La loi des nœuds : 2
    • La tension U en volt (V) représente la différence de potentiel entre 2 points, ex : entre phase et neutre U = 230V potentiel du neutre (ou la terre, neutre relié à la terre) = 0V! Dans un montage série : U = U1+U2+…. Dans un montage paralléle : U= U1=U2=U3 Loi des mailles : dans un circuit série, la somme des tensions rencontrées est égale à 0.4) Résistance électrique R : La résistance d’un élément dépend de ses dimensions : ρ = 1,6. .m S = 1mm² l =100m résistance ? R = résistance en ohm ( ) ρ = résistivité du matériau en ohms-mètres ( .m / mm²) Rép : R=1,6 S = section en m² La résistance dépend aussi de la température : a . θ) a = 0,004 R (15) = 0,64 à 15°C résistance à 80 °C? Rθ = résistance à la température θ °C R0 = résistance à la température 0°C Rép : R(0) = 0,6 a = coefficient de température en kelvin moins 1 : ( ) R(80) = 0,79 Loi d’ohm : I en DC I en AC Groupement de résistances en série : Groupement de résistances en parallèle : pour 2 résistances : R1 = 20 R2 = 10 R3 = 10 Re en série ? Re en parallèle ? Rép : Re = 40 en série Re = 4 en // 3
    • 5) Energie électrique W / puissance P : En continu, l’énergie électrique en joules ou Wh vaut : En continu, la puissance électrique en W vaut : la loi de joule pour une résistance :6) Générateurs / récepteurs actifs : Pour un générateur, la loi d’ohm vaut : E = force électromotrice = fém r = résistance interne Pour un récepteur actif (moteur) : E’ = force contre-électromotrice = fcém r’ = résistance interne7) Condensateur C : Un condensateur est un ensemble constitué de 2 plaques conductrices séparées par un isolant (diélectriques) En continu, le condensateur se charge d’électricité quand il est soumis à une tension U. En alternatif, il se charge et se décharge sans cesse. Sa capacité se donne en farad (F). Q = quantité d’électricité accumulée en coulomb (C) C = capacité du condensateur en farad (F) U = tension appliquée (V) W = énergie électrique emmagasinée Groupement de condensateur en série : Groupement de condensateur en // : 4
    • La charge ou la décharge d’un condensateur n’est pas instantanée, elle dépend de la résistance du circuit et de la valeur de C. On considère qu’un condensateur est chargé ou déchargée au bout de 5 fois τ. La constante (ou temps de charge) vaut : On place 2 condensateurs de 20µF en série sous une tension U=1000V pendant t = 1’ Quantité d’électricité ? énergie stockée ? Rép : Q = 0,01 C W=5J8) Le courant alternatif sinusoïdal : Un courant alternatif sinusoïdal est un courant qui change plusieurs fois de sens par seconde et qui a la forme de la fonction sinus. La période T en seconde est le temps d’une variation complète: La fréquence en Hertz (Hz) est le nombre de période par seconde : f=1/T Sa pulsation (ou vitesse) : w = 2.π.f Son équation mathématique est i = Î . sin( w.t+φ ) avec Î = I.√ 2 w = la pulsation en rad/s t = le temps en s Î = valeur maxi en A i = la valeur instantanée en A I = valeur efficace en A φ = angle ou phase à l’origine Un courant alternatif peut être représenté par un vecteur de FRESNEL : le déphasage est l’angle formé entre les vecteurs tensions et courants. c’est aussi le retard entre les 2 sinusoïdes. les déphasages particuliers sont : en phase φ = 0° en opposition de phase φ = 180° ou ¶ rd en quadrature de phase φ = 90° ou ¶ / 2 rd 5
    • Quelle est la valeur efficace et l’équation du courant principal qui alimente 2 récepteurs en dérivation parcourus par des courants i1 = 3 √2 sin( 100πt) et i2 = 4 √2 sin ( 100πt – π/2) ? Rép : i = 5 √2 sin ( 100πt - 53π/180 ) et I = 5A9) les puissances en monophasé : Pour une même tension, continu ou alternative le courant n’est pas le même pour un récepteur quelconque. (Les puissances seront donc différentes). On dit qu’il présente une impédance Z. U=Z.I U = la tension en (V) I = le courant en (A) Z = impédance en ( ) La puissance apparente est : S en voltampères (VA) S=U.I U en V I en A La puissance active P : P = U . I . cos φ P en watt (W) U en (V) ou P = R . I² I en (A) R en ( ) La puissance réactive : Q en voltampères réactifs (VAR) Q = U . I . sin φ U en (V) I en (A) Le facteur de puissance cos φ caractérise un récepteur, il est compris entre 0 et 1 : cos φ = P / S S²=P²+Q² Le triangle des puissances : Cos φ = P / S Sin φ = Q / S tan φ = Q / P 6
    • Un moteur monophasé est alimenté par une source de tension 230V – 50 Hz et consomme une puissance active de 0,375 Kw. Calculez les valeurs I, Q, et S si le cos φ vaut 0,75 Rép : I = 2,17A Q = 329VAR S = 499VA10) Impédance d’éléments simples : L’impédance d’un récepteur est le rapport de la tension par le courant. Elle est différenteSelon le type de récepteur : association possible de 3 élémentaires : résistance R inductance L capacité C U = la tension en (V) Z=U/ I I = le courant en (A) Z = impédance en ( ) La résistance pure R : Z=R P=R. I² Q = 0 et S = P U et I en phase φ=O° L’inductance pure L : Z=L.w P = 0 et S = Q Q= L.w.I² U et I en quadrature de phase I en retard sur U φ = 90 ° AR 7
    • La capacité pure C : Z=1/(C.w) P = 0 et S = Q Q= U².C.w U et I en quadrature de phase I est en avance sur U φ = 90 ° AVQuelle est la tension aux bornes d’un condensateur de 10 µF lorsque le courant est de 150 mA – 50Hz.Rép : U = 47,7V11) Impédance de circuits simples : circuit R + L : P=R. I² Q=L.w.I² Le courant est en retard sur U D’un angle φ compris entre 0 et 90 °. circuit inductif. circuit R + C : P=R. I² Q = U ² . C .w 8
    • I est en avance sur U. circuit capacitif Circuit R + C + L : Si L w > 1 / Cw le circuit est inductif Si Lw < 1 / Cw le circuit est capacitif Si Lw = 1 / Cw L C w² = 1 on est à la résonnance.Une résistance de R = 1000 et un condensateur de capacité C sont placés en série.Le courant absorbé est I = 0,2 A sous une tension de 230V / 50 Hz.Déterminez la valeur de C.Rép : C =5,6. ou 5,6 µF12) Relévement du facteur de puissance – la compensationThéoréme de Boucherot : Pour une installation comportant plusieurs récepteurs groupés en dérivation : les puissances actives s’ajoutent arithmétiquement : P = P1 + P2 + P3 + … les puissances réactives s’ajoutent algébriquement : Q = Q1 ± Q2 ± Q3 ± … les puissances apparentes ne s’ajoutent pas algébriquement mais vectoriellement : S = S1 + S2 + … 9
    • Amélioration du facteur de puissance ou cos φ : Un bon facteur de puissance permet de limiter l’intensité en ligne et de réduire l’énergie réactive consommée. facteur de puissance préconisé par EDF cos φ = 0,93 Le relèvement s’effectue au moyen de batterie de condensateur chargé de fournir de l’énergie réactive Qc : Qc = Q1 – Q2 Q 1 = énergie réactive avant compensation Q 2 = énergie réactive après compensation P P ( tg φ – tg φ’ ) Q2 C= _______________ S’ S Q1 U².ω S = P + Q1 S’ = P + Q2 φ angle entre P et S φ’ angle entre P et S’Une installation 230V – 50Hz alimente 1 moteur de 735W de rendement 0,85 et cos φ = 0,78 et un réseau de 4lampes de 100W. Calculez le condensateur nécessaire pour obtenir un cos φ de 0,95.Rép : Pt = 1265 W Qt = 694 VAR St = 1443 VA cosφ = 0,877 C =1,68. ou 16,8 µF13) Le réseau triphasé :13.1 Présentation : Une ligne de distribution triphasée comporte 4 conducteurs actifs : 3 phase et 1 neutre. Les 3 phases : L1 - L2 – L3 (noir - marron – noir ou 3 rouges) Le neutre : N (bleu) 10
    • 13.2 Tensions simples : Les tensions simples sont les tensions que l’on peut mesurer entre chaque fil de phase et le neutre. Elles sont notées : V1, V2 et V3. Pour un réseau tri 230 / 400V, les valeurs efficaces sont V = V1 = V2 = V3 = 230V. Ces tensions sont sinusoïdales de même fréquence mais déphasées les unes par rapport aux autres de 120°(ou 2 п /3). En valeur instantanées : Diagramme de FRESNEL : il vient : V1 + V2 + V 3 = 0 11
    • 13.3 Tensions composées : Les tensions composées sont les tensions mesurées ente phase et phase, notées U12 ; U23 et U31. Ces tensions sont de même fréquence, de valeur efficace U et décalées entre-elles de 120°. Pour un réseau tri 230 / 400V : V = 230V et U = 400V. D’après la loi des mailles : Par construction graphique : U12 = V1 – V2 U23 = V2 – V3 U31 = V3 – V1 U=V.√313.4 Montage dit étoile : Y 3 récepteurs sont montés en étoile si chacun est relié entre le neutre et une phase. Ils sont alors soumis à une tension simple V et parcourus par un courant I. 12
    • Si les 3 récepteurs sont identiques : I 1=I2=I3 I=V/Z I1 + I2 + I3 = IN = 0 Pas de courant dans le neutre ! In = 0 Le montage est dit équilibré ! Si les 3 récepteurs sont différents : I 1= V / Z1 I 2= V / Z2 I 3= V / Z3 I1 + I2 + I3 = INIl y a du courant dans le neutre ! Le montage est dit déséquilibré !13.5 Montage dit triangle : ∆ ou D 3 récepteurs sont montés en triangle si chacun est relié entre 2 phases. Ils sont alors soumis à une tension composée U et parcourus par des courants de branche J. Les courants en ligne sont notés I. D’après la loi des nœuds : J1 = J3 – I1 J2 = J1 – I2 J3 = J2 – I3 13
    • Si les récepteurs sont identiques, on démontre que : I=J.√3Un récepteur triphasé monté en étoile est constitué de trois résistances :R1 = 50 Ω , R2 = R3 = 100 Ω. La tension simple a pour valeur V = 230V. Trouver le courant dans chaque filde phase et en déduire le courant dans le neutre.Rép : I1 = 4,6A I2 = I3 = 2,3A IN = 2A calculs :14) Puissances en triphasé : Si un récepteur est alimenté en triphasé, quel que soit le couplage, chaque dipôle consomme : ⇒ Une puissance active P1, P2 et P3. ⇒ Une puissance réactive Q1, Q2 et Q3. Si les dipôles sont identiques : Pt = P1 + P2 + P3 = 3 P1 Qt = Q1 + Q2 + Q3 = 3 Q1 La puissance active : P = √3 U . I . cos φ La puissance réactive : Q = √ 3 U . I . sin φ La puissance apparente : S =√ 3 U . I S= ) Le facteur de puissance : Cos φ = P / S 14
    • Les formules de Boucherot et le triangle des puissances peuvent s’appliquer : • La puissance active totale consommée par une installation triphasée comportant plusieurs récepteurs est égale à la somme des puissances actives consommées par chacun des récepteurs. • La puissance réactive totale consommée par une installation triphasée comportant plusieurs récepteurs est égale à la somme des puissances réactives consommées par chacun des récepteurs.Un récepteur triphasé équilibré comprend : un moteur asynchrone triphasé 230 V/ 400 V (P1 = 2,4 kW ; cosφ1 = 0,8) 6 lampes 230 V, 100 W.1) Calculer la puissance P reçue par le récepteurtriphasé : W.2) Calculer la puissance Q1 reçue par le moteur : var.3) Calculer la puissance Q reçue par le récepteur : var.4) Calculer la puissance apparente S reçue par lerécepteur : VA.5) Calculer le facteur de puissance du récepteur : .Rép : Pt = 3000 W Q = Qt =1800 VAR St = 3499 VA cosφ = 0,857 Visualisation des tensions simples et composées : 15
    • 15) Compensation en triphasé : Le relèvement s’effectue au moyen de batterie de condensateur chargé de fournir de l’énergie réactive Qc : Qc = Q1 – Q2 Q 1 = énergie réactive avant compensation Q1 = Q 2 = énergie réactive après compensation C = capacité unitaire des condensateurs (F) Q2 = P en triangle : en étoile : Q2 C= C= S’ S Q1 Qc = P . ( S = P + Q1 S’ = P + Q2 φ angle entre P et S φ’ angle entre P et S’Un moteur asynchrone est alimenté par un réseau 3 X 400V – 50Hz. Il consomme 32 Kw sous un facteur globalde puissance 0,68. Calculez la capacité unitaire des condensateurs à installer en étoule pour relever le facteur depuissance à 0,94.Rép : QC = 22890 KVAR C =4,59 . ou 459 µF16) Transformateur monophasé : Un transformateur se compose d’un circuit magnétique et de 2 enroulements : primaire (alimentation indice 1) et secondaire (utilisation indice 2). Le transformateur est réversible. Il est abaisseur ou élévateur de tension. Ne jamais l’alimenter en continu ! 16
    • rapport de transformation : m = U20 / U10 = N2 / N1 A vide : la puissance absorbée correspond aux pertes fer (pertes dues aux courants de FOUCAULT et phénomène d’hystérésis). P10 = Pfer U1 U2 En charge (transfo parfait) le rapport de transformation : m = U2 / U1 = N2 / N1 = I1 / I2 la chute de tension : ∆U2 = U20 - U2 ou en % ∆U2 / U2 la puissance absorbée (entrée) : P1 = U1 . I 1 . cos φ1 la puissance utile (sortie) : P2 = U2 . I 2 . cos φ2 le rendement : η = P2 / P1 = P2 / (P2 + pertes) Les pertes sont de 2 types : pertes cuivres et pertes fer les pertes fer sont mesurées à vide les pertes cuivres ou joules : Pj = R1 I1² + R2 I2²Un transfo 380V / 24V.possède un rendement PJ2 = S2 = 10I2² pour un facteur de puissance de 0,8. Les de 0,92, R2 . KVA PJ1 = R1 I1²pertes fer = 120W. etCalculer dans ces conditions les pertes joules totales (primaire et secondaire) dans le transfo.Rép : PJ = 576 W17) Machines à courant continu : les machines à courant continu sont réversibles. Elles peuvent fonctionner en moteur ou en génératrice (dynamo). La machine se compose : d’un circuit magnétique 17
    • (pôles, épanouissements polaires, entrefer, culasse et tôles de l’induit). 2 circuits électriques : inducteur et induit. Caractéristiques Fonctionnement en Fonctionnement en génératrice moteur f.é.m. E=n.N.ф E’ = n . N . ф tension U=E–r.I U = E’ + r’ . I Puissance absorbée Pa = P méc Pa = U . I Pertes joules Pj = r . I² + R . i ² Pj = r’. I² + R’. i ² Pertes constantes Pc = Pfer + P méc Pc = Pfer + P méc Puissance électromagnétique Pe = E . I Pe = E’ . I Puissance mécanique Pméc = Tu . Pméc = Tu . Puissance utile Pu = U . I Pu = P méc Couple électromagnétique Te = (N . ф . I) / 2π Te = (N . ф . I) / 2π Couple utile Tu = Pu / Tu = Pu / η = Pu / Pa η = Pu / Pa rendement Pa = Pu + pertes Pa = Pu + pertes pertes = Pc + R . i² + r . I² pertes = Pc + R’.i² +r’ .I²Quelle est la fém d’un moteur à excitation séparée dont l’induit, alimenté sous une tension de 420V, absorbe uncourant d’intensité égale à 35,5A ? R (induit) = 1,79 .Rép : E’ = 356V 18
    • 18) Moteur asynchrone triphasé : La vitesse de synchronisme du champ tournant crée par les enroulements du stator est : ns = et s = 2 . π .nsns = vitesse de synchronisme en tr/sf = fréquence du réseau en Hzp = nombre de paires de pôles du stator s = vitesse angulaire de synchronisme en rd/s Fréquence de rotation du rotor : n = ns pour un moteur synchrone, n < ns pour un asynchrone. Glissement d’un moteur : g = (ns - n ) / ns Pa = .U. I .cos φ Puissance absorbée : Puissance utile : Pu = Tu . = Pa - Rendement : η= = Un moteur asynchrone absorbe une puissance de 1,1 Kw et tourne à une vitesse de 935 tr/min. Le moment du couple utile est de 8 N.m. Calculez le rendement du moteur. Rép : η = 71,2 %19) Compléments de mécanique :19.1 Transformation vitesse linéaire vitesse angulaire : Dans le cas d’un mouvement linéaire obtenu par la rotation d’un moteur (moteur + treuil = moteur de levage) : v = vitesse linéaire en mètre par seconde (m/s) n = vitesse de rotation en tour par seconde (tr/s) ω = vitesse angulaire en radian par seconde (rd/s) D = diamètre de la roue F = force nécessaire pour vaincre le poids (P) 19
    • n ou ω 1 tour correspond au périmètre 1 tr = π.D treuil ω = 2π . n et n = , il vient : D ω= charge m19.2 Puissance mécanique utile du moteur de levage : Le couple utile vaut : Tu = F.r F doit être supérieur à P et P = m . g il vient pour la puissance utile : Pu = Tu . ω avec F = P = m . g et ω = 2π.n Pu = r.m.g.2π.n g = gravité terrestre en newton par seconde (N/s) m = masse en kilo (Kg) r = rayon du treuil en mètre (m) Pu = puissance utile en W19.3 Utilisation d’un réducteur de vitesse : Si on place un réducteur de vitesse de coefficient réducteur K (K<1) ; la vitesse est réduite, mais le couple augmenté : ne ns réducteur Ts = avec ns<ne et Ts>Te Te Ts19.3 Rendement d’une chaine cinématique : Pu Pa Moteur Réducteur treuil charge Pa = avec Pa = √3.U.I.cosφ et Pu = Tu.ω 20