Your SlideShare is downloading. ×
科学のための共通言語
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

科学のための共通言語

84

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
84
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 「科学」のための共通言語 Common Language for the Scienceシグマ (Σ) 記号とパイ (Π) 記号 mikawaya 垂水共之 t2@okayama-u.ac.jp
  • 2. 科学のための共通言語• 数  学  自然科学のための共通言語 「諸科学の共通言語としての数学の発掘と数理科学への展開」(研究代表者:高橋陽一郎) http://www.iias.or.jp/research/project/2011_03.htmlとすれば• 統計学  科学(自然、社会、人文)の ための        共通言語
  • 3. シグマ記号• 平均のために 小学校 5 年、 6 年の単元 計算はできる n ( H23 統計検定試験 2 級、正解率 96% ) ∑x i =1 i = x + x2 +  + xn• 拒絶反応! n n(n + 1) ∑k = 2 k =1 n n(n + 1)(2n + 1) ∑k = k =1 2 6 2 n  n(n + 1)  ∑k =  2  k =1 3  
  • 4. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an
  • 5. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an n A k = k =1 n A k = k =1
  • 6. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an n A k = A1 ∪ A2 ∪  ∪ An k =1 n A k = A1 ∩ A2 ∩  ∩ An k =1
  • 7. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an n A k = A1 ∪ A2 ∪  ∪ An k =1 n A k = A1 ∩ A2 ∩  ∩ An k =1 n ∏a k =1 k =
  • 8. なぜ シグマ( Σ ) n∑ak =1 k = a1 + a2 +  + an nA k = A1 ∪ A2 ∪  ∪ Ank =1 nA k = A1 ∩ A2 ∩  ∩ Ank =1 n∏ak =1 k = a1 ? a2 ? ? an
  • 9. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an n A k = A1 ∪ A2 ∪  ∪ An k =1 n A k = A1 ∩ A2 ∩  ∩ An k =1 n ∏a k =1 k = a1 ? a2 ? ? an
  • 10. なぜ シグマ( Σ ) n∑ak =1 k = a1 + a2 +  + an ∑ Sum n∏a = a1 ? a2 ? ? an ∏k =1 n k ProductA k = A1 ∪ A2 ∪  ∪ Annk =1∏Aa ==Aa∩×A ∩∩a n a × × k 1 2 n1k=k =1 k  A 1 2 n
  • 11. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an n A k = A1 ∪ A2 ∪  ∪ An k =1 n A k = A1 ∩ A2 ∩  ∩ An k =1 n ∏a k =1 k = a1 ? a2 ? ? an
  • 12. なぜ シグマ( Σ ) n ∑a k =1 k = a1 + a2 +  + an n A k = A1 ∪ A2 ∪  ∪ An k =1 n A k = A1 ∩ A2 ∩  ∩ An k =1 n ∏a k =1 k = a1 × a2 ×  × an

×