Your SlideShare is downloading. ×
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Trabalho de robotica
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Trabalho de robotica

287

Published on

Robô de limpeza

Robô de limpeza

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
287
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Robótica Industrial ROBO DE LIMPEZA DOMESTICO ROBO DE LIMPEZA DOMESTICO E PERFORMANCE DE COBERTURA DE MODELAGEM DA LIMPEZ DE ALGUNS ROBOS DOMESTICOS EM CENARIO REDUZIDO Tobias Marques Abrantes Universidade da Beira Interior Departamento de Electromecânica Mestrado em Engenharia electromecânica Resumo: No mundo de hoje os sistemas robotizados aplicados a limpeza domestica tem pouco enfase no nosso quotidiano mas isso tem vindo a mudar com o aumento e desenvolvimento dessa área. O objectivo deste trabalho é dar a conhecer as características básicas de robôs de limpeza domestica e posteriormente a análise de performance de cobertura de modelagem da limpeza de alguns robôs. Nas características iram-se debruçar em concreto qual o modo de funcionamento, os vários sensores e componentes que caracterizam este tipo de robôs. Posteriormente faremos uma analise pormenorizada à performances de cobertura da limpeza do chão de alguns robôs móveis. Os resultados obtidos em um cenário reduzido mostram que a cobertura do chão limpo é completa em todos os casos, se o algoritmo de exploração do caminho e planeamento tiver alguma dependência aleatória. Além disso, a evolução da área limpa pelo robô que pode ser modelado com uma única exponencial onde a amplitude define a cobertura de-limpeza máxima atingida e a constante de tempo define a evolução dinâmica da cobertura. Palavras-chave: Robô domestico, robô de limpeza, robô aspirador, Roomba, irobot. 1
  • 2. Robótica Industrial ROBO DE LIMPEZA DOMESTICO 1. INTRODUÇÃO Um robô é um dispositivo que consegue através de dos seus sensores e da sua capacidades de processamento, obter informações do meio envolvente e de forma autónoma tomar decisões com base na informação obtida. Os robôs hoje em dia cada vez se tornam mais aplicados as acções do dia-a-dia como na limpeza e serviços domésticos. Cada vez a procura se torna maior destes robôs domésticos pelas pessoa, pelos mais variados motivos, seja pela pouca vontade, por já não se encontrar com capacidades suficientes, pelas falta de tempo e pela falta de recursos financeiros para pagar alguém para realizar essas tarefas. Essa tarefa torna-se automatizada pelos robôs de limpeza doméstica que aspiram as várias divisões da casa sem que seja necessária a intervenção do homem, calculado dependendo do algoritmo a melhor maneira de efectuar a limpeza para que no fim esteja bem executada. Prevê-se no futuro, que a robótica dedicada a limpeza doméstico vai estar mais presente na nossa vida quotidiana e cada vez mais serão implementados novas tecnologias de modo que os robôs desempenhem melhor a função para que foram concebidos. 2. CARACTERISTICAS BASICAS DE UM ROBO DE LIMPEZA DOMESTICO Todos os modelos de robôs de limpeza domésticos são geralmente em forma de disco, sendo 34 cm de diâmetro e menos de 9 cm de altura as medidas típicas de um modelo da Roomba na figura 1. Eles usualmente possuem um pára-choques na parte da frente e um sensor omnidireccional infravermelho no seu centro frontal superior. A alça é montada no topo da maioria das unidades. Todas as versões do Roomba utilizam um par de escovas, girando em direcções opostas, para remover as partículas do chão. Na maioria dos modelos, as escovas são seguidas por um rodo de vácuo, pelo qual o fluxo de ar é direccionado através de uma fenda estreita para aumentar a sua velocidade, a fim de remover a poeira fina. Possui uma escova horizontalmente montado no lado direito da unidade que varre contra as paredes para chegar aos detritos não acessíveis pelas escovas principais, tendo por base os elementos apresentados em [2] e [3]. Fig. 1. Robô de limpeza domestico Roomba. 2
  • 3. Robótica Industrial ROBO DE LIMPEZA DOMESTICO 2.1 Modo de Funcionamento Estes tipos de robôs funcionam com uma bateria recarregável vulgarmente de Ni-MH. A bateria de alguns modelos mais recentes do Roomba e do Navibot tem vindo a diminuir o tempo de recarga para aproximadamente de duas a três horas. Uma carga completa significa mais ou menos duas horas de limpeza, o que, no mundo do Roomba, equivale à aspiração de três divisões de tamanho médio. O sistema de movimentação consiste principalmente em duas rodas de tração accionadas por um motor geralmente com uma terceira roda livre para manter o equilíbrio. A mudança de direcção é feita alternando a potência fornecida a cada roda. Após consulta de diversos sites e manuais [1], [2], [3]. 2.2 Navegação O sistema de auto navegação é o que faz a automatização de um aspirador robô, e a precisão dos sensores de navegação é o que define qual a qualidade dele e inevitavelmente o preço do robô. O Roomba utiliza o Sistema de Inteligência Robotizada AWARE (tm) da iRobot para fazer várias decisões por si mesmo. Portanto, a interferência humana é mínima. O sistema do robô é composto por múltiplos sensores que recolhem os dados do ambiente e os enviam ao microprocessador do robô, que altera as acções do robô de acordo com a situação. O sistema calcula a nova informação até 67 vezes por segundo, tendo por base os elementos apresentados em [2]. No caso do Roomba começa a limpeza com movimento em espiral e depois se dirige para o perímetro da divisão. Quando ele atinge um obstáculo, acredita que tenha alcançado o perímetro da divisão. Ele então limpa ao longo do "perímetro" até atingir um outro obstáculo. Neste ponto, ele limpa ao redor desse obstáculo, encontra um caminho livre e prossegue atravessando a divisão entre objectos como paredes e móveis até que o tempo de limpeza ajustado termine. A ideia parece ser que, se o robô limpar por um determinado período de tempo, cobrirá o piso inteiro. Estes robôs podem limpar cerca de duas horas com uma única carga. Se o auto carregador estiver disponível, o robô retornará e se conectará ao carregador sozinho quando a carga da bateria estiver fraca. Isso acontece devido ao receptor infravermelho no seu párachoques frontal. Quando a carga da bateria fica fraca, o aspirador começa a procurar pelo sinal infravermelho emitido pelo carregador (figura 2). Quando ele o encontra, o robô segue o sinal e se conecta ao carregador. Alguns aspiradores robô com este recurso de auto recarga saem do carregador e continuam a limpeza quando estão totalmente recarregados. Antes de colocar este robô em funcionamento, primeiro é preciso remover pequenos obstáculos que se encontram no piso onde vai ser efectuado a limpeza, para que ele não fique preso sobre eles ou tente aspirá-los. É necessário colocar unidades de paredes virtuais, para o robô ficar dentro de determinados limites em certos casos. As paredes virtuais enviam sinais de infravermelhos que o robô detecta com o seu receptor no pára-choques. Quando ele recebe um sinal de uma parede virtual, ele sabe que deverá voltar e seguir outro caminho. Os sensores deste robô permitem que ele navegue em casa com relativa autonomia [2] e [3]. 3
  • 4. Robótica Industrial ROBO DE LIMPEZA DOMESTICO Fig. 2. Robô a procura da base de carregamento através do sensor infravermelho. 2.3 Limpeza Um sistema de limpeza composto por três partes:    A escova giratória lateral sai da carcaça do robô para alcançar pontos que o lado de baixo não consegue alcançar. Ela gira ao longo das paredes para levantar a sujidade e direccioná-la para a área de aspiração. A escova no lado oposto do robô direcciona qualquer sujidade persistente de volta à parte inferior da unidade para que seja aspirada; O agitador no lado inferior do robô consiste em duas escovas girando em sentido contrário que agarram a sujidade e outros detritos e os depositam directamente no recipiente do lixo; O aspirador suga a sujidade e a poeira à medida que o robô se move pelo piso. Fig. 3. Sistema de limpeza de um robô domestico. 2.4 Sensores Para identificar quais áreas necessitam de limpeza extra, o robô geralmente tem dois sensores de sujidade localizados imediatamente acima da escova do agitador. Estes sensores de sujidade são sensores de impacto acústico. Quando o agitador encontra uma grande quantidade de sujidade, causa mais vibração nas placas de metal dos sensores. Os sensores detectam esse aumento e informam o robô para passar em cima da área novamente. Para fazer a transição entre os tipos de piso há alguns tipos de robôs, que a estação de limpeza do robô (que abriga o ajuste do agitador) ajusta automaticamente sua altura quando detecta uma diferença de altura considerada na 4
  • 5. Robótica Industrial ROBO DE LIMPEZA DOMESTICO superfície do piso. Possui ainda um sensor que lhe permite saber que há degraus e que não o deixa cair no caso de esses existirem na casa. Por fim sensores de toque que se encontram na frente do robô com a forma de “pára-choques” que no caso de o sensores infravermelho não detectar o obstáculo o robô sabe que tem algo a sua frente que não lhe permitem a passagem. Após consulta de diversos sites e manuais [1], [2], [3]. 3. PERFORMANCE DE COBERTURA DE AREA LIMPA DE ALGUNS ROBOS DOMESTICOS EM CENARIO REDUZIDO A tarefa repetitiva da limpeza do chão é uma aplicação clara de robôs móveis. A limpeza pode ser identificada como um problema complexo, sendo a cobertura de uma determinada área que tem de ser totalmente limpa por um robô. No caso de ambientes conhecidos este problema pode ser resolvido facilmente usando uma variedade de métodos, algoritmos genéticos, por abordagem de rede neural, algoritmos baseados em uma decomposição celular exacta, com base em árvores geradoras, baseado na execução em espiral preenchendo caminhos, etc. Apesar de na maioria dos casos, a posição do robô devem ser conhecidas com grande precisão e uma aplicação real com esses algoritmo num robô depende em grande parte do interna e externa no bordo dos sensores utilizados para a auto localização. No caso de um cenário de limpeza desconhecido, possui as típicas coisas de decoração doméstica e hábitos de desordem das pessoas, o problema com cobertura torna-se mais complexo e na maioria dos robôs usam algoritmos aleatórios de planeamentos de caminhos ineficiente. Nesta parte o objectivo é verificar as performances de cobertura de área limpa de alguns planeamento caminho aleatórios de robôs doméstico através da medição da sua posição e trajectória utilizando um sistema de visão exterior de uma maneira semelhante que é realizada para identificar parâmetros cinemáticos em manipuladores robóticos em vez do problema típico de auto - localização. Três robôs de limpeza domésticos e um protótipo são medidos, analisados e modelados. RC 3000 RoboCleaner, fabricado pela Alfred Kärcher Vertriebs- GmbH, Postfach 800, D- 71364 Winnenden, Alemanha; Trilobite, fabricado pela Electrolux, S: t Göransgatan 143, SE- 105 45 Estocolmo, Suécia; Roomba , fabricado pela iRobot , 8 Crosby Drive, Bedford, MA 01730 , EUA , e RoboNet uma evolução do protótipo. Os robôs seleccionados estavam disponíveis no mercado no final de 2004 e, actualmente, todos os eles têm uma versão actualizada e melhorada. A Tabela 1 mostra a imagem, os parâmetros estruturais e uma representação simplificada dos robôs, incluindo diâmetro e localização escova relativa. A representação simplificada será utilizada para estimar a dinâmica evolução da limpeza a cobertura da trajectória do robot, enquanto os desempenhos de seus dispositivos de limpeza não são analisados neste trabalho. Os robôs seleccionados usam no seu planeamento de caminho em rectas no seu algoritmo de controlo: em frente até colisão e girando um ângulo aleatório antes de ir directo novamente. RC 3000 o uso de um algoritmo de controlo do caminho - de 5
  • 6. Robótica Industrial ROBO DE LIMPEZA DOMESTICO planeamento totalmente aleatório, desde o começando. Trilobite segue o perímetro da sala até alguns caminhos difícil ou o final do perímetro e em seguida, são encontrados planeamento de caminho aleatório. Roomba realiza uma espiral limpeza no início que é muito útil se o robô está colocado no centro de uma sala vazia mas após a colisão o algoritmo de controlo executa a exploração pathplanning aleatório antes de repetir a limpeza espiral. RoboNet é totalmente baseado em um algoritmo de controlo do planeamento de caminho aleatório. RC 3000 utiliza sensores mecânicos para detectar colisões; Trilobite usa sensores ultra-sônicos para a parede seguinte e evitar colisões; Roomba usa sensores mecânicos para detectar colisões e um sensor infravermelho para a parede seguinte; RoboNet detecta colisões com um acelerómetro de dois eixos de silício e controla a velocidades aplicadas às rodas. Neste trabalho, um único modelo exponencial será aplicado é para estimar a evolução de cobertura de limpeza de todos os de limpeza robôs seleccionados (T. Palleja et al., 2009). Tabela 1. Parâmetros estruturais e representação simplificada dos robôs. 3.1 Sistema de medição Um sistema de medição básica de visão que foi desenvolvido para gravar (J. Palacín et al., 2005), estimar a trajectória e a evolução da cobertura de limpeza dos robôs seleccionados. O sistema de medição tem quatro partes principais: o dispositivo de aquisição de imagem, o cenário de limpeza, o procedimento de aquisição de imagem, e a análise de imagem (T. Palleja et al., 2009). 3.2 Modelação da cobertura de chão limpo Um conjunto de medidas experimentais foram desenvolvidas no cenário de limpeza para modelar a cobertura de chão limpo, as experiencias foram repetidos pelo menos 10 vezes para obter uma evolução média, mas apenas os resultados individuais são usados e demostrados. O conjunto de manobras foi desenvolvido sem objectos 6
  • 7. Robótica Industrial ROBO DE LIMPEZA DOMESTICO adicionais dentro do cenário de limpeza e com o piso já limpo. Alguns robôs incluem um sensor óptico para medir o nível de sujidade no chão e reduzir a velocidade adequada durante a limpeza. Além disso, os robôs com diferentes algoritmos de medição ou exploração de caminho foram usados com as configurações padrão assumindo que a interacção do robô é minimizada pelo uso diário. Em primeiro lugar, uma referência de imagem de fundo do cenário de limpeza sem o robô móvel é tomada. Em segundo lugar, o robô com uma marca de referência foi colocado no cenário de limpeza. Em terceiro lugar, a gravação de imagem e, em seguida, o robô começa o seu trabalho. Nas figuras seguintes mostra uma sequência de quadros originais obtidos com os robôs enquanto na parte inferior mostra a localização estimada e orientação do robô móvel sobre a camada de solo utilizado para estimar-cobertura de chão. Na Fig 4 o RC de 3000, fig. 5 para Trilobite, fig. 6 para RoboNet, e fig. 7 para Roomba. Na fig. 7 existem dois possíveis evoluções de cobertura de chão para Roomba com ou sem o efeito de cobertura da escova rotativa adicional incluído na frente do robô, um aspecto que será discutido mais adiante neste trabalho. Fig. 4. RC 3000: instantes da trajectória de 0,2; 2; 5;10 minutos (em cima) e os correspondentes caminhos de limpeza e de cobertura (em baixo). Fig. 5. Trilobite: instantes da trajectória de 0,2; 2; 5;10 minutos (em cima) e os correspondentes caminhos de limpeza e de cobertura (em baixo). 7
  • 8. Robótica Industrial ROBO DE LIMPEZA DOMESTICO Fig. 6. RoboNet: instantes da trajectória de 0,2; 2; 5;10 minutos (em cima) e os correspondentes caminhos de limpeza e de cobertura (em baixo). Fig. 7. Roomba: instantes da trajectória de 0,2; 2; 5; 10 minutos (em cima) e os correspondentes caminhos de limpeza e a cobertura com a escova de limpeza frontal adicional (no meio) e sem (em baixo). A cobertura de chão, mostrado da fig. 4 à 7 é codificada utilizando cinco níveis de cinzento diferentes (mais escura é equivalente a mais passagens) para comprovar que a cobertura é completa em todos os casos, apesar de todos os robôs seleccionados limparem várias vezes a mesma área, o que resulta numa ineficaz ao longo da limpeza. Na fig. 8 mostra a evolução da distância percorrida pelos robôs. A evolução é muito linear e a velocidade média foi de 0,80 km / h para o Roomba, 0,49 km / h para o RC 3000, 0,47 km / h para o Trilobite e 0,17 km / h para o RoboNet. A velocidade mais baixa do RoboNet foi intencionalmente para reduzir o impacto de colisão, porque é um protótipo construído com o muito frágil photopolymer. Na fig. 9 mostra-se a evolução 8
  • 9. Robótica Industrial ROBO DE LIMPEZA DOMESTICO da área coberta pelo menos uma vez pelos robôs seleccionados. O Roomba é marcado duas vezes na figura: ”Roomba 1” corresponde à cobertura de área limpa, considerando o efeito de escova rotativa adicional incluído na parte da frente do robô, enquanto “Roomba“ corresponde à cobertura sem esta escova adicional. Essa diferenciação foi feita para evidenciar a influência de dispositivos adicionais de limpeza na zona abrangida, embora, neste caso particular, não está claro se com a alta velocidade a escova rotativa é uma contribuição real para a operação de limpeza porque as grandes partículas de poeira pode ser projectadas vários metros de distância a partir da sua posição inicial. No entanto, não é claro se este efeito é uma verdadeira desvantagem porque o Roomba (e para todos os robôs seleccionados) limpa várias vezes a mesma área do cenário e aumenta as chances de lembrar essas novas partículas de poeira. A evolução mostrada na fig. 9 está correlacionada com a velocidade dos robôs móveis que não é um aspecto crucial numa limpeza automática e sem supervisão. Todas as evoluções de limpeza têm uma forma exponencial, excepto no caso de Trilobite onde o perímetro da sala é explorado no início, embora após esta etapa inicial da exploração segue uma evolução tipicamente exponencial. Fig. 8. Evolução da distancia percorrida pelos robôs. Fig. 9. Evolução da área total de terreno limpo com os robôs. Na fig. 10 mostra uma representação da evolução de limpeza de chão contra a distância (J. Palacín et al., 2005). Esta representação supera a influência da velocidade e os estados de latência entre os movimentos do robô. A evolução inicial da cobertura para os robôs seleccionados (Fig. 10) está altamente correlacionada com a largura da escova principal. A ordem definida pela mais rápida evolução de cobertura de solo nos primeiros 10 metros são Trilobite (largura escova de 260 mm), RoboNet (212 mm), o Roomba (170 mm), e RC 3000 (95 mm). Tal como esperado, a mais larga escovar resultados nas performances mais rápidos do domínio da distância, mas também é muito importante ter um tamanho mais pequeno para introduzir sob objectos como cadeiras durante a limpeza (T. Palleja et al., 2009). 9
  • 10. Robótica Industrial ROBO DE LIMPEZA DOMESTICO Fig. 10. Evolução da área total de terreno limpo com os robôs. 3.3 Resultados O uso de uma escova lateral adicional no “ Roomba “ tem grande impacto sobre a evolução de cobertura de chão, porque dá acesso a áreas de contorno não disponíveis para os outros robôs móveis. A máxima área coberta é altamente correlacionada com a proximidade do robô pode ir para as paredes e a distância radial a partir do dispositivo de limpeza para a estrutura externa do robô, que é especialmente importante nas voltas após a colisão com as paredes. A ordem definida pela cobertura máxima é Roomba (99,5 %), Trilobite (95,6 %), RoboNet (85,5 % em 15 minutos, mas 95 % com um tempo adicional), CV 3000 (88,1 %), e Roomba (82,6 %) (T. Palleja et al., 2009). 5. REFERÊNCIAS J. Palacín, T. Palleja, I. Valgañón, R. Pernia, J. Roca, Measuring coverage performances of a floor cleaning mobile robot using a vision system, in: Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, Barcelona, 2005, pp. 4236 a 4241. T. Palleja, M. Tresanchez, M. Teixido, J. Palacin, Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario, Robotics and Autonomous Systems (2010) 37 a 45, 2009. [1] ELECTROLUX, TRILOBITE ZA2 user guide, 2013. [2] iRobot,Roomba Owner’s Manual, 2006. [3 ] http://www.samsung.com/pt/consumer/home-appliances/vacuum-cleaner/robot old/VCR8855L3B/XEF 10

×