Uav image recognition technology and applications
Upcoming SlideShare
Loading in...5

Uav image recognition technology and applications



Tejas P. Kulkarni - Cockrell School of Engineering

Tejas P. Kulkarni - Cockrell School of Engineering

Presented at the 2011 Texas GIS Forum



Total Views
Views on SlideShare
Embed Views



0 Embeds 0

No embeds



Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • very good!
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

Uav image recognition technology and applications Uav image recognition technology and applications Presentation Transcript

  • UAV Image RecognitionTechnology and Applications The UT UAV Group Cockrell School of Engineering The University of Texas at Austin Harmony Mones‐Murphy Chockalingam Viswanathan Tejas Kulkarni
  • What is a UAV?• The Department of Defense Dictionary defines a UAV as: A powered, aerial vehicle that does not carry a  human operator, uses aerodynamic forces to  provide vehicle lift, can fly autonomously or be  piloted remotely, can be expendable or  recoverable, and can carry a lethal or nonlethal  payload. 
  • Driving Technology• Powered heavier than air flight• Radio control (R/C)• Autopilots• GPS• Imagery systems• High density power batteries• Long range and low‐power micro radio devices• Miniaturized parts• Wireless networks• Powerful micro‐processors
  • 1898 1912 1933 1960 1903 1918 1959HISTORICAL FIRSTS
  • 1898: First demonstration  of radio‐control  Nikola Tesla’s “Teleautomaton,” a radio‐control boat  Electrical Exposition at Madison  Square Garden
  • 1912: First autopilot Elmer and Lawrence Sperry Curtiss B‐2• A gyrostabilizer hydraulically  operated the elevators and rudder.• Allowed the aircraft to fly straight  and level without pilot input.
  • 1918: First radio‐controlled unmanned flight • Forerunner of the  modern cruise missile. Curtiss‐Sperry Aerial Torpedo
  • 1959: First unmanned reconnaissance aircraft Northrop Radioplane SD‐1 Falconer/Observer
  • Fixed‐WingNorthrop Grumman RQ‐4 Global Hawk
  • Rotorcraft Helicopter: Northrop Grumman MQ‐8 Fire  Scout Quadcopter Tiltrotor: Bell Eagle Eye
  • Electro‐optic Payload Systems• Optical Cameras• Low‐light‐level  (LLL) Cameras• Thermal Imagers
  • Radar Imaging Payloads• Synthetic  Aperture  Radar(SAR)
  • Dispensable Payloads • Military – Missiles• Civil ‐ Pesticides
  • UT UAV
  • Our Team • Undergraduate • Interdisciplinary • Student leadership
  • AUVSI Competition• Student UAS  Competition in  Maryland• Reconnaissance  mission• Fourth year of  participation• 1st in Autonomous  Target Recognition in  2010 
  • Phoenix IIAirframe Avionics Imagery
  • UT UAV Overview• Our Implementation – Target Detection – Target Analysis – Position Determination
  • Target Characteristics• Position (LLA)• Background Shape• Background Color• Alphanumeric 4 to 8 feet Character• Alphanumeric Color• Orientation 4 to 8 feet
  • Target Detection• Color‐based approach – Outlier image• Exploit target attributes – Size, aspect ratio• Implemented on DSP – Texas Instruments  C6748
  • Background Image• Represent image  in 3‐D color space – , • Image contains background and  foreground
  • Foreground Image• Average RGB pixels in frame 0.06 Red Plane 0.04 P e rc en t 0.02 0 0 50 100 150 200 255 Green Plane 0.04 P erc e nt 0.02 0 0 50 100 150 200 255 Blue Plane 0.04 P erc e nt 0.02 0 0 50 100 150 200 255 Pixel Intensty• Compute distance from mean• Distance threshold determines potential  targets
  • Outlier Image• Potential targets highlighted in oultlier image Original Image Outlier Image
  • Binary Image• Remove noise ‐ windowed median filter• Label objects ‐ connected component Binary Image Label Image
  • Target Analysis Bounding Segmentation Skeleton Compare Rectangle RotateCropped Image
  • Target Detection Performance• Tested on scaled airfield and recorded  video – Robust to trees, runways – Poor at detecting some colors Specification Performance Speed 10 frames per second Detection Accuracy* 85% False Positive Rate 10% * Accuracy = ratio of targets detected to total number of targets
  • ResultsLegend:      Correct      Incorrect       Marginally Incorrect 
  • Target Position Determination• Convert image coordinates to absolute position• Position Accuracy – Maximum allowable error – 150 feet – Desired error – less than 50 feet• Monte Carlo Error Analysis – Sweep camera 60 degrees in all directions from the  vertical – Estimate standard deviation of error
  • Monte Carlo Error Analysis Error Analysis (500 feet altitude) Standard Deviation (feet) 1000 750 45 500 40 250 35feet 0 30 -250 25 -500 20 -750 -1000 15 -750 -500 -250 0 250 500 750 1000 feet
  • System OverviewSony FCB EX‐980S  Target Analysis LabVIEW Texas Instruments  C6748 Triangle J Purple Yellow NW Lat Lon
  • Plans for 2012• Communication – Switch to Wifi (802.11N)• Digital camera (DSLR)• Weight reduction
  • Why UAVs?• UAVs are suited for doing the “dull, dirty  and dangerous” tasks of everyday life.
  • Applications of UAVs in Texas• Oil & gas• Wildfires• Ranching
  • Oil & GasUse to check pipelines for leaks  Use as a method to collect and transmit  data between rigs
  • Wildfires Bastrop County WildfireAid Firefighters with real time  information and firefighting  capability. 
  • RanchingSpraying crops with pesticide and fertilizer, monitoring crops, soil, moisture, and pest conditions, and insect sampling Use to track cattle/deer Check fences for holes
  • Safety• Due to safety concerns there are strict  regulations regarding the use of UAV’s in  unrestricted airspace throughout the  world. 
  • Air Systems Lab• All the work done in the Air systems lab  are undergraduate student projects, for  various competitions. 
  • Q&A