Your SlideShare is downloading. ×
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Why elasticsearch rocks!
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Why elasticsearch rocks!

2,894

Published on

Published in: Technology
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,894
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
26
Comments
0
Likes
5
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. WhyElasticsearch rocks ! AlpesJUG – 19 février 2013
  • 2. Tanguy Leroux● Consultant et Formateur @ Zenika● Elasticsearch Addict● @tlrx● http://github.com/tlrx● tlrx.dev@gmail.com
  • 3. Un projet Open source+ 700 forks +3500 watchers +100 commiters GitHub Apache 2 License
  • 4. Basé surApache lucene Version 3.6.2, bientôt la 4.1
  • 5. Une installationZERO CONFIGDécompresser. Exécuter. Ça marche.
  • 6. Orientédocument JSON
  • 7. personne{ "nom" : "Reinhardt", "prenom" : "Jean Django", "date_naissance" : "1910-10-23"}
  • 8. film{ "titre" : "Django Unchained", "genre" : "western", "date_sortie" : "2013-01-16"}
  • 9. Elasticsearch / SGBD Index → Base de données Type → TableDocument → Row Field → ColumnMapping → Schema
  • 10. Elasticsearch est SCHEMA LeSSLa structure des documents peut évoluer avec le temps
  • 11. Aujourdhui{ "titre" : "Django Unchained", "genre" : "western", "date_sortie": "2013-01-16"}
  • 12. demain{ "titre" : "Django Unchained", "genre" : "western", "date_sortie" : "2013-01-16", "realisateur" : { "nom" : "Tarantino", "prenom" : "Quentin" }, "nb_entrees" : 3159385, "acteurs" : [ { "nom" : "Foxx", "prenom" : "Jamie" }, { "nom" : "Waltz", "prenom" : "Christoph" }, { "nom" : "Tarantino", "prenom" : "Quentin" } ]}
  • 13. Recherche de « tarantino »{ "titre" : "Django Unchained", "genre" : "western", "date_sortie" : "2013-01-16", "realisateur" : { "nom" : "Tarantino", "prenom" : "Quentin" }, "nb_entrees" : 3159385, "acteurs" : [ { "nom" : "Foxx", "prenom" : "Jamie" }, { "nom" : "Waltz", "prenom" : "Christoph" }, { "nom" : "Tarantino", "prenom" : "Quentin" } ]}
  • 14. Recherche de « django » film personne{ "titre" : "Django Unchained", "genre" : "western", { "date_sortie" : "2013-01-16", "realisateur" : { "nom" : "Reinhardt", "nom" : "Tarantino", "prenom" : "Jean Django", "prenom" : "Quentin" "date_naissance" : "1910-10-23" }, } "nb_entrees" : 3159385, "acteurs" : [...]}
  • 15. Un moteur de recherche restfulhttp://HOST:PORT/index(s)/type(s)/_action|id Méthodes HTTP: GET, PUT, POST, DELETE
  • 16. ExemplesIndexer un document Put http://HOST:PORT/mediatheque/film/1 POSt http://HOST:PORT/mediatheque/film/Récupérer un document get http://HOST:PORT/mediatheque/film/1Supprimer un document delete http://HOST:PORT/mediatheque/film/1Créer un index post http://HOST:PORT/mediatheque/musiqueRechercher get http://HOST:PORT/mediatheque/film/_search?q=django get http://HOST:PORT/_search?q=django
  • 17. Un langage de requêtes Query dslmatch, field, query_string, bool, term, Fuzzy, match_all,more like this, geo, Range, wildcard, span, ...
  • 18. De nombreuses Facettesterms, histogram, date histogram, range, Stats, geo distance, filter, query ...
  • 19. facette « terms »curl -XGET localhost:9200/_search -d { "query": { "match": { "titre": "django hard" } }, "facets": { "facet_genres": { "terms": { "field": "genre" } } }}
  • 20. facette « terms »{... "hits":{ ... }, "facets":{ "facet_genres":{ "_type":"terms", "missing":0, "total":2, "other":0, "terms":[ {"term":"western","count":1}, {"term":"action","count":1} ] } }}
  • 21. facette « terms »{... "hits":{ ... }, "facets":{ "facet_genres":{ "_type":"terms", "missing":0, "total":2, "other":0, "terms":[ {"term":"western","count":1}, {"term":"action","count":1} ] } }}
  • 22. facette «histogramme»curl -XGET localhost:9200/media/film_search -d { "query": { "match_all": {} }, "facets": { "facet_entrees": { "histogram": { "field": "nb_entrees", "interval": "1000000" } } }}
  • 23. facette «histogramme»{ "hits": { … }, "facets": { "facet_entrees": { "_type": "histogram", "entries": [ { "key": 1000000, "count": 1 }, { "key": 2000000, "count": 1 }, { "key": 3000000, "count": 1 } ] } }}
  • 24. facette «histogramme»{ "hits": { … }, "facets": { "facet_entrees": { "_type": "histogram", "entries": [ { "key": 1000000, "count": 1 }, { "key": 2000000, "count": 1 }, { "key": 3000000, "count": 1 } ] } }}
  • 25. Elasticsearch est distribuéPlusieurs nœuds communiquent en uni/multicast Node master, data, http ...
  • 26. Ils ont aussi pensé à lasupervision
  • 27. Elasticsearch est100 % Java
  • 28. Mais aussi tout plein dautres clientsPhp, perl, scala, python, shell, ruby,.Net, Grails, play !, flume, clojure, Puppet, chef,...
  • 29. Un gros paquet de pluginsPlugin danalyse, rivers, transport, Site, misc, ...
  • 30. Extraction de texte avecApache tika
  • 31. Lindexation facilitée avec les riversJdbc, Mongodb, couchdb, rabbitmq, activemq, Ldap, rss, twitter, wikipedia, ...
  • 32. Jdbc river plugincurl -XPUT localhost:9200/_river/my_jdbc_river/_meta -d { "type" : "jdbc", "jdbc" : { "driver" : "com.mysql.jdbc.Driver", "url" : "jdbc:mysql://localhost:3306/test", "user" : "", "password" : "", "sql" : "select * from orders" }}
  • 33. LAPIpercolate
  • 34. API percolatecurl -XPUT localhost:9200/_percolator/media/film_box_office -d { "query": { "constant_score": { "filter": { "range": { "nb_entrees": { "from": "5000000", "include_lower": true } } } } }}
  • 35. API percolatecurl -XPOST localhost:9200/media/film/?percolate=* -d { "titre":"Hollywoo", "genre":"drame", "nb_entrees": 6000000}{ "ok":true, "_index":"media", "_type":"film", "_id":"70fc7FMWS8Sdxo733_5sWg", "_version":1, "matches":["film_box_office"]}
  • 36. Et aussiParent/child Warmers Slowlog Script Backup ...
  • 37. Merci ?

×