Your SlideShare is downloading. ×
Waseda.L#1/@tkf
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Waseda.L#1/@tkf

776
views

Published on


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
776
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. . . . .. . . @tkf Waseda.L 2009 7 11 @tkf ( Waseda.L ) 2009 7 11 1 / 23
  • 2. : ( ) @tkf, id:tkf41, : M1 : / / @tkf ( Waseda.L ) 2009 7 11 2 / 23
  • 3. — — (Recurrent Neural Network) → @tkf ( Waseda.L ) 2009 7 11 3 / 23
  • 4. — — . . .. . ( ) .. . . : : : : ? ? ? @tkf ( Waseda.L ) 2009 7 11 4 / 23
  • 5. — — . . .. . ( ) .. . . : : : : ? ? ? @tkf ( Waseda.L ) 2009 7 11 4 / 23
  • 6. — — . . .. . ( ) .. . . : : : : ? ? ? @tkf ( Waseda.L ) 2009 7 11 4 / 23
  • 7. — — . . .. . ( ) .. . . : : : : ? ? ? @tkf ( Waseda.L ) 2009 7 11 4 / 23
  • 8. — — . . .. ( ) . .. . . : “ ”↔“ ” ? : @tkf ( Waseda.L ) 2009 7 11 5 / 23
  • 9. — — . . .. ( ) . .. . . : “ ”↔“ ” ? : @tkf ( Waseda.L ) 2009 7 11 5 / 23
  • 10. — — . . .. ( ) . .. . . : “ ”↔“ ” ? : @tkf ( Waseda.L ) 2009 7 11 5 / 23
  • 11. — — . . .. ( ) . .. . . : “ ”↔“ ” ? : @tkf ( Waseda.L ) 2009 7 11 5 / 23
  • 12. — — . . .. . .. . . @tkf ( Waseda.L ) 2009 7 11 6 / 23
  • 13. — ?— @tkf ( Waseda.L ) 2009 7 11 7 / 23
  • 14. — — : PC (NN ) (CPU, ) ??? (*.exe) (*.c, *.py) @tkf ( Waseda.L ) 2009 7 11 8 / 23
  • 15. — RNN — Output neurons Input neurons Context neurons (Internal states) Neural Network(NN) = NN Recurrent Neural Network(RNN) @tkf ( Waseda.L ) 2009 7 11 9 / 23
  • 16. — RNN — Output Input Output Input Contex neuron Output Input @tkf ( Waseda.L ) 2009 7 11 10 / 23
  • 17. Output Input Output Input Output Input @tkf ( Waseda.L ) 2009 7 11 11 / 23
  • 18. Output Input Output Input Output Input @tkf ( Waseda.L ) 2009 7 11 11 / 23
  • 19. Output Input Output Input Output Input @tkf ( Waseda.L ) 2009 7 11 11 / 23
  • 20. R K U L @tkf ( Waseda.L ) 2009 7 11 12 / 23
  • 21. RK RL R R K UK UL U c 2 U L c 1 K L (Sugita and Tani, 2008) @tkf ( Waseda.L ) 2009 7 11 12 / 23
  • 22. RK ?? Own behaviors UK UL c 3 Other’s behaviors c 2 RK RL R c 1 UK UL U K L → →1 1 → @tkf ( Waseda.L ) 2009 7 11 13 / 23
  • 23. RK ?? Own behaviors UK UL c 3 Other’s behaviors c 2 RK RL R c 1 UK UL U K L → →1 1 → @tkf ( Waseda.L ) 2009 7 11 13 / 23
  • 24. NN ? : , , , , , @tkf ( Waseda.L ) 2009 7 11 14 / 23
  • 25. NN ? : , , , , , @tkf ( Waseda.L ) 2009 7 11 14 / 23
  • 26. NN ? : , , , , , @tkf ( Waseda.L ) 2009 7 11 14 / 23
  • 27. — — RK ?? Own behaviors UK UL c 3 Other’s behaviors c 2 RK RL R c 1 UK UL U K L RL RL RL @tkf ( Waseda.L ) 2009 7 11 15 / 23
  • 28. — — @tkf ( Waseda.L ) 2009 7 11 16 / 23
  • 29. — - — 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 UL UL UL UL UL UL UL UL UK UK UK 0.0 UL UL UL UL UL UL UL UL UL UK UK 0.1 UL UL UL UL UL UL UL UL UL UK UK 0.1 UL UL UL UL UL UL UL UL UL UK UK 0.2 UL UL UL UL UL UL UL UL UL UK UK 0.2 UL UL UL UL UL UL UL UL UL UK UK 0.3 UL UL UL UL UL UL UL UL UL UK UK 0.3 UL UL UL UL UL UL UL UL UL UK UK 0.4 UL UL UL UL UL UL UL UL UL UK UK 0.4 UL UL UL UL UL UL UL UL UL UK UK 0.5 0.5 → UL UL UL UL UL UL UL UL UK UK UK UL UL UL UL UL UL UL UL UL UK UK 0.6 UL UL UL UL UL UL UL UK UK XK RK 0.6 UL UL XK XK XK XK XK XK XK XK RK 0.7 UL UL UL UL UL XK XK XK XK RK RK 0.7 RL RL RL RL RL RK RK RK RK RK RK 0.8 UL UL XK XK XK RK RK RK RK RK RK 0.8 RL RL RL RL RL RL RK RK RK RK RK 0.9 XK XK RK RK RK RK RK RK RK RK RK 0.9 RL RL RL RL RL RL RK RK RK RK RK 1.0 RK RK RK RK RK RK RK RK RK RK RK 1.0 RL RL RL RL RL RL RL RK RK RK RK RL RL RK RL R UK UL U c 2 c 1 K L @tkf ( Waseda.L ) 2009 7 11 17 / 23
  • 30. (1) (2) (3) ( ) : @tkf ( Waseda.L ) 2009 7 11 18 / 23
  • 31. (1) (2) (3) ( ) : @tkf ( Waseda.L ) 2009 7 11 18 / 23
  • 32. (1) (2) (3) ( ) : @tkf ( Waseda.L ) 2009 7 11 18 / 23
  • 33. @tkf ( Waseda.L ) 2009 7 11 19 / 23
  • 34. Appendix — ?— ? @tkf ( Waseda.L ) 2009 7 11 20 / 23
  • 35. Appendix — (SOM+RNN) — ( ) x(t)−µi 2 exp − σ si (t) = ( ) , i∈S (1) ∑ x(t)−µ j 2 j∈S exp − σ ci (t) = a(ui (t)) = sigmoid(ui (t)), i ∈ C (2) { ci (t), i ∈ S zi (t) = , i∈N (3) si (t), i ∈ C ∑ j ui (t + 1) = (1 − i )ui (t) + i w z j (t), i ∈ N i j∈N (4) exp (ui (t + 1)) gi (t + 1) = ∑ ( ), i ∈ S (5) j∈S exp u j (t + 1) ∑ y(t + 1) = gi (t + 1)µi (6) i∈S @tkf ( Waseda.L ) 2009 7 11 21 / 23
  • 36. Appendix — (3D) — UK UL RK 1 RL 0.8 0.6 0.4 0.2 PC 3 0 -0.2 -0.4 -0.6 -0.8 -1 1 0.5 0 PC 2 -0.5 -1 -1.5 2 2.5 1 1.5 -2 0 0.5 -1 -0.5 PC 1 @tkf ( Waseda.L ) 2009 7 11 22 / 23
  • 37. Appendix — — ? “ ” “ ” : 1 1 0.5 0.5 0 0 PC 2 PC 2 -0.5 -0.5 -1 -1 +20mm UK -1.5 +10mm -1.5 0mm UL -10mm RK -20mm RL -2 -2 -1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5 PC 1 PC 1 RL @tkf ( Waseda.L ) 2009 7 11 23 / 23