Your SlideShare is downloading. ×
Eletromagnetismo 1
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Eletromagnetismo 1

1,007
views

Published on


0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,007
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
80
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • {}
  • Transcript

    • 1. Eletromagnetismo Trem magnético, como funciona? O trem magnético não utiliza rodas, eixos ou transmissões mecânicas, e sim um sistema magnético de levitação em um trilho especial. Ou seja, sem que exista contato com os trilhos, o trem flutua e se move.
    • 2. Ímãs São corpos que tem a propriedade de atrair o ferro ou algumas de suas ligas ( mas não o aço inox) ou de interagir entre si. O fenômeno foi observado há mais de 2.000 anos em uma região da Ásia Menor denominada Magnésia (atual Turquia). Daí o nome magnetismo.
    • 3. Magnetita As rochas compostas basicamente de óxido de ferro (Fe3O4) são denominadas magnetitas. O minério de ferro (Fe3O4) é considerado um ímã natural.
    • 4. Ímãs artificiais Os ímãs naturais supriram por muito tempo as necessidades da humanidade, mas, com o progresso, foi preciso desenvolver ímãs artificiais mais potentes e duradouros. O processo de obtenção dos ímãs artificiais é denominado imantação. Fig.: Ímãs de Alnico: liga composta de Fe (Ferro) contendo Al (Alumínio), Ni (Níquel) e Co (Cobalto), além de outros elementos. Essa liga foi criada na década de 30.
    • 5. Tipos de ímãs artificiais - Alnico: criado na década de 1930. Funcionam a altas temperaturas (500°C a 550°C) e são resistentes à corrosão. - Ferrite: criado no início de 1950. Resistente à corrosão, sais lubrificantes e gases. Usado em alto falantes. - Samário – cobalto: criado nos anos 1960. Caro e frágil. É funcional a temperaturas de até 250°C. Utilizado em micromotores. - Neodímio – ferro – boro: criado da década de 1980. São os mais modernos pois possuem as melhores propriedades magnéticas. São utilizados em alto falantes, equipamentos elétricos e brindes.
    • 6. Pólos de um ímã Qualquer ímã possui dois pólos, denominados pólo norte (N) e pólo sul (S). -Pólo norte (N): se volta para o norte geográfico da Terra. -Pólo sul (S): se volta para o sul geográfico da Terra.
    • 7. Interação entre os pólos de um ímã
    • 8. Pólos de nomes contrários se atraem e de mesmo nome se repelem.
    • 9. Inseparabilidade dos pólos de um ímã Um pólo magnético norte jamais existe sem a presença de um pólo magnético sul e vice versa. Se partirmos um ímã ao meio, novos ímãs serão formados.
    • 10. Ímãs permanentes e temporários - Permanentes: mantém a imantação. - Temporários: o corpo perde a imantação de forma imediata.
    • 11. Campo magnético Em torno de um ímã ou de um condutor percorrido por uma corrente elétrica, observam – se interações de origem magnética devido à existência de um campo magnético gerado por eles.
    • 12. O campo pode ser visualizado pelas linhas de força magnética (linhas de campo magnético). As linhas de indução são orientadas do pólo norte para o pólo sul.
    • 13. Campo magnético da Terra Podemos associar a Terra a um grande ímã, cuja propriedade magnética acredita – se ser em consequência de correntes elétricas existentes na sua parte central (constituída de um núcleo de ferro fundido). O pólo sul magnético aproximadamente no norte geográfico e o pólo norte magnético aproximadamente no sul geográfico.
    • 14. Cinturões de Van Allen – escudo magnético da Terra A Terra possui um campo magnético, a magnetosfera, cujas linhas de indução correm de polo a polo, curvando – se sobre si próprias Os cinturões de Van Allen são duas zonas da magnetosfera que captam ou repelem partículas provenientes do espaço.
    • 15. A Terra é constantemente bombardeada pelas partículas ionizadas e nocivas à saúde provenientes principalmente do Sol. Devido à existência do campo magnético terrestre, estamos parcialmente livres, na superfície do planeta, dessas radiações e partículas.
    • 16. Aurora Boreal
    • 17. Indução Magnética É a imantação de um campo magnético por meio de um ímã. As substâncias ferromagnéticas tem seus ímãs elementares orientados facilmente quando submetidos a ação de um campo magnético. Exemplo: ferro e níquel
    • 18. Campo magnético gerado por correntes elétricas Toda corrente elétrica gera no espaço que a envolve, um campo magnético. Todo campo magnético é produzido por cargas elétricas em movimento. O campo magnético é uma grandeza vetorial: tem um módulo, uma direção e um sentido.
    • 19. Campo magnético em um fio retilíneo (B) µ0 = 4∏ x 10-7 T.m/A i: corrente elétrica, em Amperès r: distância do ponto P ao fio. Unidade do SI: Tesla (T)
    • 20. Sentido do campo magnético O sentido do campo é dado pela regra da mão direita. O polegar é disposto no sentido da corrente e os demais dedos semidobrados envolvendo o condutor fornecem o sentido de B
    • 21. Convenção: : afasta – se do observador : aproxima – se do observador
    • 22. Campo magnético gerado por uma espira circular e por um solenoide Na figura abaixo você observa um condutor sob forma de espira circular com centro O e raio R sendo percorrido por uma corrente elétrica de intensidade i.
    • 23. Em torno da espira surge um campo magnético cuja direção e sentido é fornecido pela regra da mão direita (você coloca o polegar no sentido da corrente com a mão espalmada, em seguida você fecha a mão como se fosse pegar o pegar o fio e o sentido da “fechada” de mão é o sentido do vetor), considerando cada pequeno trecho da circunferência como sendo um condutor retilíneo.
    • 24. A intensidade do campo magnético no centro da espira circular de raio R vale B=μ.i/2R e, se você enrolar vários (n) fios em torno da mesma circunferência de raio R (bobina chata ou plana), a expressão será B=n. μ.i/2R.
    • 25. Campo magnético no interior de um solenoide Um solenoide ou uma bobina longa é constituído por um condutor enrolado por um número muito grande de espiras iguais, uma ao lado da outra, conforme figura abaixo.
    • 26. Quando o solenoide é percorrido por corrente elétrica, a configuração de suas linhas de indução é obtida pela reunião das configurações de cada espira o que equivale à configuração das linhas de indução de um imã natural.
    • 27. O interior do solenoide o campo magnético é praticamente uniforme e sua intensidade é constante e vale: Utilidades dos eletroímãs – seleção e transportes de sucatas de ferro, pegar carros e objetos de metal pesado, disjuntores,
    • 28. Fazer uma pesquisa sobre o funcionamento da ressonância magnética

    ×