Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

No Downloads

Total views

3,035

On SlideShare

0

From Embeds

0

Number of Embeds

15

Shares

0

Downloads

120

Comments

0

Likes

3

No embeds

No notes for slide

- 1. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE
- 2. Speed Time Graphs NOTE D S T × ÷ ÷ 20 40 0 0 2 4 Time (hours) Speed (mph) Calculate the distance travelled in each journey. 20 40 0 0 2 4 6 Time (hours) Speed (mph) 20 40 0 0 2 4 6 Time (hours) Speed (mph) D = 4 × 30 = 120 miles average speed D = 5 × 20 = 100 miles 30 miles 90 miles + 15 miles 135 miles In Speed Time graphs, the distance travelled is the same as the area under the graph . Higher Maths 2 2 Integration UNIT OUTCOME SLIDE
- 3. Reverse Differentiation NOTE D T speed = ‘ rate of change of distance with respect to time ’ REMEMBER If we know how the speed changes, and want to find distance, we need to ‘ undo ’ finding the rate of change with respect to time. In other words we need to reverse differentiate . Differentiating backwards is used to find the area under a function . f ( x ) Higher Maths 2 2 Integration UNIT OUTCOME SLIDE x y
- 4. Estimating Area Under Curves NOTE To estimate area under a function, split the area into vertical strips . f ( x ) x f ( x ) x The area of each strip is the height, multiplied by : x Total Area f ( x ) x × f ( x ) x × ( ) = As the strips get narrower , the estimate becomes more accurate. Area under the function = f ( x ) f ( x ) x as 0 means ‘the sum of...’ Higher Maths 2 2 Integration UNIT OUTCOME SLIDE x x y x y
- 5. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Integration NOTE The algebraic method for finding area under a function is called Integration . ‘ Integrate’ means ‘join together all the pieces’ Integration uses reverse differentiation to ‘ undo ’ finding the rate of change. Area under the function = f ( x ) f ( x ) x d x x as 0 f ( x ) = x d x Expression or function to be integrated. x y
- 6. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Differentiating Backwards NOTE Integration involves differentiating in reverse. multiply by the power reduce the power by one f ( x ) f ′ ( x ) divide by the power increase the power by one f ( x ) f ′ ( x ) • divide every x -term by the new power How to differentiate backwards: • increase the power of every x -term by one
- 7. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Finding the Anti-Derivative NOTE The result of a differentiation is called a derivative . • divide by each new power How to Reverse Differentiate • increase each power by one The result of differentiating backwards is called the anti-derivative . Example dy dx = 8 x 3 + x 2 – 6 x Find the anti-derivative for y y = dx 8 x 3 + x 2 – 6 x = 2 x 4 + x 3 – 3 x 2 1 3 d x expression or function
- 8. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE The Constant of Integration NOTE When differentiating, part of an expression is often lost. Example f ( x ) = x 4 + 2 f ( x ) = x 4 f ( x ) = x 4 – 7 f ′ ( x ) = 4 x 3 All three functions have derivative The anti-derivative of f ′ ( x ) is f ( x ) = x 4 + c unknown constant When differentiating in reverse, it is essential to remember to add back on the unknown number. This is called the constant of integration .
- 9. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Basic Integration NOTE The result of integration is called an integral . f ( x ) Example 1 d x f ( x ) = x 6 • divide by each new power How to Integrate • increase each power by one = 1 7 = x 7 + c d x x 6 • add the constant of integration constant of integration Example 2 d x 4 x Find = d x 4 x 1 2 = 8 x + c = 8 x 1 2 + c LEARN THIS
- 10. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Integration and Area NOTE Integration can be used to find the area ‘ under ’ a function between two different values of x . f ( x ) x 1 x 2 d x f ( x ) x 1 x 2 = d x f ( x 2 ) – d x f ( x 1 ) Area under f ( x ) between x 1 and x 2 = ‘ Upper Limit ’ ‘ Lower Limit ’ This is called a Definite Integral x y
- 11. The area ‘under’ a function can be described more mathematically as the area between the function and the x -axis . Area Between a Function and the x - axis Higher Maths 2 2 Integration UNIT OUTCOME SLIDE NOTE x y f ( x ) d x f ( x ) 5 - 2 5 - 2 y g ( x ) d x g ( x ) 3 - 6 3 - 6 x y h ( x ) 8 - 7 x d x h ( x ) 8 - 7
- 12. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Evaluating Definite Integrals NOTE = dx 2 x 3 0 3 [ x 4 + c 1 2 ] 0 3 = ( × ( 3 ) 4 + c 1 2 ) ( × ( 0 ) 4 + c 1 2 ) – = 40 1 2 The constants of integration cancel each other out. Definite Integrals do not require the constant of integration. d x x 1 x 2 Definite Integral Write integral inside square brackets units 2 Example NOTICE
- 13. [ ] Higher Maths 2 2 Integration UNIT OUTCOME SLIDE Evaluating Definite Integrals (continued) NOTE Example 2 4 1 d x 4 1 9 x 2 – 2 x 3 x 3 – x 2 = ( ) 3 × 4 3 – 4 2 = – ( ) 3 × 1 3 – 1 2 ( ) 192 – 16 = – ( ) 3 – 1 = 174 units 2 Find the area below the curve between x = 1 and x = 4 . y = 9 x 2 – 2 x Write integral inside square brackets... (no constant required) ...then evaluate for each limit and subtract. Remember units!
- 14. When calculating areas by integration, areas above the x - axis are positive and areas below the x - axis are negative . Areas Above and Below the x - axis Higher Maths 2 2 Integration UNIT OUTCOME SLIDE NOTE x y b a c d dx f ( x ) a b > 0 dx f ( x ) c d < 0 f ( x ) How to calculate area between a curve and the • draw a sketch • calculate the areas above and below the axis separately • add the positive value of each area (ignore negative signs) x - axis : x -
- 15. Area Between Functions Integration can also be used to find the area between two graphs, by subtracting integrals. Higher Maths 2 2 Integration UNIT OUTCOME SLIDE NOTE f ( x ) x y g ( x ) Area enclosed by f ( x ) and g ( x ) d x f ( x ) = = – d x g ( x ) f ( x ) d x g ( x ) ( – ) b a b a b a b a between intersection points a and b is above f ( x ) g ( x ) CAREFUL!

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment