Your SlideShare is downloading. ×
0
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
21st Century Curriculum and Assessment
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

21st Century Curriculum and Assessment

911

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
911
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • http://www.flickr.com/photos/arabcrunch/
  • Virtual worlds and immersive environments have become an accepted method for teaching and learning (USDE, 2010).
  • The development and demonstration of higher-order cognitive skills involved in science inquiry are difficult to measure with open-response and multiple-choice tests (NRC, 2006; Quellmalz & Haertel, 2004; Resnick & Resnick, 1992). The focus of this research is not specifically about what inquiry is but how inquiry can be measured through VPAs.
  • authentic assessment exercises require students to apply scientific knowledge and reasoning to situations similar to those they will encounter in the world outside the classroom, as well as to situations that approximate how scientists do their work (NSES)
  • Virtual Performance Assessments (VPAs, IES Grant #R305A080141) use an immersive environment to situate students in a virtual setting that simulates a scientific challenge. These immersive environments enable authentic scientific inquiry where students are assessed based on performances captured as in-world interactions. Rich event-logs of student actions form the basis of observations on which conclusions are drawn about what inquiry skills each student knows. Rather than an ongoing narrative where there is a right answer, our assessments allow students to construct a narrative through a series of choices where each decision they make affects their in-world experience. Rich in-world observations enable us to make nuanced assessments of students’ misconceptions of science inquiry.
  • It is May, and students in Ms. Jones’ 8th grade science class have to take their achievement tests. She logs into the VPA teacher’s portal and creates accounts for her students, selecting the initial assessment she wants them to take. When class starts, the students sit at individual computers and login to begin their simulated experience.
  • The ability for students to choose their own avatar is a design decision that we hope will provide students with a sense of autonomy for the experience. Arielle sits at her computer and logs into the student portal. She opens the assessment and is immediately allowed to choose what her avatar looks like. She selects and avatar and enters the world.
  • The camera slowly provides an aerial view of the world to orient Arielle to the problem space. Arielle sees that there is a village and what appears to be farms with ponds. The camera then focuses in on a multi-colored frog with 6 legs. Arielle wonders, “What could be causing this frog to have 6 legs?” The assessment begins. A scientist and farmers who have just discovered this mutated frog greet Arielle. The farmers all offer competing hypotheses for why the frog is mutated.
  • The scientist turns to Arielle’s avatar and tells her that she must conduct and investigation and come up with her own theory and back it up with evidence. He asks her if she thinks any of the hypotheses are plausible.
  • The goal of VPA is for students to make choices based on sound science inquiry skills that advance the theory that they are attempting to build. In VPAs, a student’s measure of science inquiry performance is based on their in-world actions. Their actions and choices are given a range of scores and weightings that contribute to an ongoing student model of science inquiry. They are temporally evaluated based on past, present, and future actions. In other words, a choice is evaluated in terms of the previous actions, their actual choice within the context of the available choices, and the outcome of their choice that sets the stage for the next set of actions. For example, if a character asks a student what they think the problem is and the student responds that they think the mutant frog is a result of pollution, the character will ask the student to provide evidence for their claim. The evidence that a student gives will be weighted and evaluated based on their prior actions (data that they have previously collected) and by what they choose to present as evidence.
  • At this point in the assessment, Arielle has a choice. She could have gone to the lab and accessed information there such as research articles. However, she chose to go explore. This choice is recorded on the back-end. We are recording students’ choices and that are then be compiled into patterns. These patterns are then built and compared to profiles of students’ inquiry knowledge established during our cognitive task analyses. Because of this, the assessment has a built-in framework that enables us to examine students’ intent and interpret their actions.At the first farm, Arielle says she plans to collect a water sample. She enters the farm and collects a sample of the water. She also picks up a frog and a tadpole to bring back to the lab and run some tests.
  • She finds a research article and starts reading it. It contains information on tadpoles and viruses so she puts it in her backpack and decides to visit another farm. At this point, Arielle has collected 5 pieces of data. Her backpack will only allow her to hold 8 pieces of data at a time.
  • Arielle will be forced to make a choice about what data she thinks is the most important or that she wants to investigate first. If students were allowed to pick up every piece of data in the world then it would be difficult to make inferences about their knowledge of what data is important evidence in the investigation. If students were asked to evaluate a piece of data every time they collected it then the task would become boring. Thus, the design is requiring students to make a choice through actions. She can go to the lab at any times to run tests on the data (e.g. water tests, blood test, genetic test). Any piece of discarded data from the backpack will go back into the world and can be picked back up at any time (given there is space in the backpack).Arielle has collected 8 pieces of data from two farms. She does not want to discard any data and decides to go to the lab to run some tests. She arrives at the lab and examines the water samples. Her tests show that the lab water and water from one of the farms contains pesticides. However, one of the farms has clean water. She runs genetic tests on the 2 frogs she collects and sees that they are the same. She notes that both of the frogs have high counts of white blood cells. She decides that she needs more evidence and goes to collect water samples from the other two ponds. At this point, Arielle has spent her time collecting data and running tests.
  • Transcript

    • 1. TIE*21 21st Century Curriculum and Assessment Dr. Valerie Irvine Dr. Jillianne Code @_valeriei or virvine@uvic.ca @jilliannecode or jcode@uvic.ca Assistant Professors, Educational Technology University of Victoria http://tie.uvic.ca
    • 2. TIE*21 Why? • 21st Century Teaching and Learning  See Christy Clark’s Throne Speech (pdf) » Pg 10 & 17-18  See Report on 21st Century Teaching and Learning by BC Premier’s Technology Council • Opportunity to improve learning methods
    • 3. TIE*21 Early 20th Century Classroom
    • 4. TIE*21 Late 20th Century Classroom
    • 5. TIE*21 21st Century Classroom
    • 6. TIE*21 We teach the way we were taught Not how our students want to learn…
    • 7. TIE*21
    • 8. TIE*21 What is INTERACTIVE?
    • 9. TIE*21 TOUCH is INTERACTIVE
    • 10. TIE*21 SOCIAL MEDIA is INTERACTIVE
    • 11. TIE*21 What happens when the two interact?
    • 12. TIE*21 Personal Learning Network • Capture events anywhere anytime • Share events with anyone or everyone • Get or give help within your community • Expand your personal learning network…
    • 13. TIE*21
    • 14. TIE*21 21st Century Classroom
    • 15. TIE*21 21st Century Classroom
    • 16. TIE*21 Comments from our PLN
    • 17. TIE*21 Why? • Assessment and evaluation opportunities – Using networking and multimedia tools • Increased engagement • Support for Special Needs • Just-in-time resources (often free or cheap)
    • 18. TIE*21 21st Century CURRICULUM KEY POINTS • Incorporation of technology as a way of doing things…
    • 19. TIE*21 21st Century CURRICULUM KEY POINTS Understanding how networks work is one of the • Digital Literacy most important literacies of • Understandingthe 21st century. Howard Rheingold (2010)
    • 20. TIE*21 21st Century CURRICULUM KEY POINTS • Increased focus on skills as opposed to content
    • 21. TIE*21 21st Century CURRICULUM KEY POINTS • Self-Regulation of Learning • see Allyson Hadwin at Uvic or recording at http://tie.uvic.ca
    • 22. TIE*21 21st Century CURRICULUM KEY POINTS • Needs to allow for creativity as per PTC report
    • 23. TIE*21 21st Century CURRICULUM KEY POINTS • Pull-out IRP document of technology- infused outcomes similar to grade-only pull-out IRPS • Supports district or school technology coordinators • Supports pre-service teacher educators
    • 24. TIE*21 iPads as an example • Demonstration • Trend of iPads in Schools • iPads for Kindergarters • View Youtube
    • 25. TIE*21 21st Century ASSESSMENT • Move from Assessment OF Learning to Assessment FOR Learning • Incorporate innovative ways of assessing learning
    • 26. TIE*21 Comments from our PLN
    • 27. TIE*21 Our challenge • Simply using technology to deliver digitized versions of item-based paper-and-pencil tests does not realize the full power of technology in assessment • We need to create new types of measurement experiences that are purpose driven, reliable, and engaging • These will provide richer and more authentic observations of student learning27
    • 28. TIE*21 Assessing Science Inquiry Learning The case of a 21st century assessment28
    • 29. TIE*21 the problem Science inquiry is difficult to measure with open-response and multiple- choice tests29
    • 30. TIE*21 authentic assessment of inquiry require students to apply scientific knowledge and reasoning to situations similar to those they will encounter in the world outside the classroom, as well as to situations that approximate how scientists do their work (NSES)30
    • 31. TIE*21 what is a immersive virtual assessment (IVA) • an immersive environment used to situate students in a virtual setting that simulates a scientific challenge • allow students to construct a narrative through a series of choices • rich in-world observations enable us to make nuanced assessments of students’ misconceptions of science inquiry31
    • 32. TIE*21 there’s a new frog in town assessment 232
    • 33. TIE*21 avatar selection33
    • 34. TIE*21 competing hypotheses34
    • 35. TIE*21 the task35
    • 36. TIE*21 talking to a scientist
    • 37. TIE*21 ok, so how is science inquiry measured? • a student’s measure of science inquiry performance is based on their in-world actions • actions and choices are given a range of scores and weightings that contribute to an ongoing student model of science inquiry. • They are temporally evaluated based on past, present, and future actions.37
    • 38. TIE*21 collecting data38
    • 39. TIE*21 being strategic about choices39
    • 40. TIE*21 internet kiosk40
    • 41. TIE*21 example of a lab sample41
    • 42. TIE*21 Resources • iPads/iPods in the Classroom  Diigo http://bit.ly/mYwDct  Apps in Education & Blog Posts on Do’s and Don’ts http://bit.ly/iD2woL  Keith Rispin’s “The other side” http://t.co/eWUyY2i  TechieAng Expanding Teaching/Exploring Technology http://bit.ly/sfejX1

    ×