A LASSO for Linked Data


Published on

Using Linked Data to improve personal knowledge management, document management and creativity techniques

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Tool-using Species: Orangutan, Octopus,…Herbivorious animals: Sheep, Goat, Zebra,…
  • A LASSO for Linked Data

    1. 1. A LASSO for Linked DataLookup & Alignment Service with Semantic Open Data<br />Using Linked Data to improve personal knowledge management,document management and creativity techniques <br />09.09.11<br />www.lassoproject.org<br />1<br />
    2. 2. Partners<br />Gnowsis<br />Neurovation<br />punkt. netServices / Semantic Web Company<br />TU-Graz<br />09.09.11<br />www.lassoproject.org<br />2<br />
    3. 3. 09.09.11<br />www.lassoproject.org<br />3<br />Aims<br />Improving recommendation of content and experts<br />Creativity applications need inspiring suggestions<br />Better entity extraction and disambiguation in text<br />By using<br />A knowledge model enriched with Linked Open Data<br />Context from the user’s desktop<br />
    4. 4. Challenges<br />Correctly linking local knowledge models with LOD cloud (aka Lookup)<br />Efficient elicitation and leveraging of context to find and properly disambiguate entities<br />09.09.11<br />www.lassoproject.org<br />4<br />
    5. 5. Use Case 1 Thesaurus Managment<br />09.09.11<br />www.lassoproject.org<br />5<br />
    6. 6. What is Thesaurus Management?<br />09.09.11<br />www.lassoproject.org<br />6<br />
    7. 7. Why Thesaurus Management?<br />Concept tagging (Synonym and multiple languages)<br />Better (automatic) tag suggestions<br />Improved content and expert suggestions<br />Semantic search<br />Search and browsing assistants<br />09.09.11<br />www.lassoproject.org<br />7<br />
    8. 8. Why Thesaurus Management with Linked Data?<br />Ease thesaurus creation and maintenance<br />Improve disambiguation of entities<br />Richer tagging and better classification of documents<br />Enables semantic search services and content recommendation<br />09.09.11<br />www.lassoproject.org<br />8<br />
    9. 9. Demo:PoolParty Tag and Content Recommender<br />09.09.11<br />www.lassoproject.org<br />9<br />
    10. 10. Conventional LOD Alignment <br />Simple Keyword Lookup mechanism<br />09.09.11<br />www.lassoproject.org<br />10<br />
    11. 11. LOD Alignment with LASSO<br />Improved LOD disambiguation by using context of knowledge model<br />backgroundknowledgeofsearchtermshelpto „expandqueries“<br />bettersimilaritysearchbecauseofmoremetadata<br />contentaugmentationthroughlinkeddata<br />11<br />
    12. 12. 09.09.11<br />www.lassoproject.org<br />12<br />
    13. 13. 09.09.11<br />www.lassoproject.org<br />13<br />
    14. 14. Leveragegrabbed LOD infoforcontentanalysis<br />14<br />Apple<br />http://dbpedia/Apple<br />Apple is in the process of launching an application to allow iPhone, iPad and iPod Touch users to purchase Apple merchandise straight from their devices.<br />Apple Inc.<br />http://dbpedia/Smartphone<br />http://dbpedia/iPhone<br />iPhone<br />iPhone 3G<br />http://dbpedia/iPhone3G<br />iPhone 3GS<br />
    15. 15. WikiSame – Confluence Plugin<br />09.09.11<br />www.lassoproject.org<br />15<br />
    16. 16. More LASSO Thesaurus Features<br />Semi-automatic population of thesaurus<br />Classification of new concepts<br />Classification of documents<br />09.09.11<br />www.lassoproject.org<br />16<br />
    17. 17. Try PoolParty!<br />Register for free at poolparty.biz<br />Contact:<br />t.schandl@semantic-web.at<br />Twitter: @semwebcompany<br />17<br />09.09.11<br />www.lassoproject.org<br />
    18. 18. Know Center Context Elicitation Framework<br />Get a glimpse about the user’s current task<br />Collect information<br />Sensors capture interaction information<br />“Low level” data<br />From the operating system and the user applications, e.g. Outlook, Word, Firefox<br />09.09.11<br />www.lassoproject.org<br />18<br />
    19. 19. 09.09.11<br />www.lassoproject.org<br />19<br />Know Center Context Elicitation Framework<br />Aggregation<br />Infer higher level concepts<br />From keystrokes and mouse clicks to actions (copy+paste, open,…) and resources (documents, people or e-mails)<br />Analyze relationships<br />between resources with usage based rules<br />Export results<br />For further analysis and visualization<br />
    20. 20. Get in touch<br /><ul><li>Know Center Context Elicitation Frameworkhttp://know-center.tugraz.at/</li></ul>Contact:<br />alfred.wertner@tugraz.at<br />Twitter: @contextgroupkc<br />20<br />09.09.11<br />www.lassoproject.org<br />
    21. 21. LASSO and <br />Catching Inspirations in the LOD Cloud<br />09.09.11<br />www.lassoproject.org<br />21<br />Use Case 2<br />
    22. 22. The Idea Platform: Neurovation.net<br />09.09.11<br />www.lassoproject.org<br />22<br />Our Focus:<br /><ul><li>Providing a versatile environment for the creative worker
    23. 23. Providing creativity tools for our users (Inspiration Services)</li></li></ul><li>Our first Inspiration Service<br />09.09.11<br />www.lassoproject.org<br />23<br />Audio Files<br />mammal<br />animal<br />color<br />pink<br />Word associations<br />
    24. 24. 09.09.11<br />24<br />An Inspiration Service using the LOD Cloud<br />Context<br />Lookup and Alignment Service<br />User Feedback<br />I never saw a purple cow.
I never hope to see one.
But I can tell you anyhow
I'd rather see than be one.<br />Ranking Service<br />Ranked Inspirations<br />Seth Godin<br />Gelett Burgees<br />www.lassoproject.org<br />
    25. 25. Expected Results<br />Context aware inspirations<br />Image-word combinations have relations<br />Inspirations can be fuzzy or sharp<br />09.09.11<br />www.lassoproject.org<br />25<br />
    26. 26. Try it out!<br />neurovation.net<br />inspirationmachine.at<br />Contact:<br />stefan.wunder@neurovation.net<br />Twitter: @neurovation<br />26<br />09.09.11<br />www.lassoproject.org<br />
    27. 27. LASSO and Refinder<br />www.getrefinder.com<br />Use Case 3<br />www.lassoproject.org<br />27<br />
    28. 28. Refinder: Collect, Curate, Communicate<br />28<br />40% of theworkforcein developedeconomies spend 45% of their time withinformationmanagement.<br />For them, Refinder isthenext-generationtoolto findtherelevantthings in theinformationoverflow.<br />Itismarketed as semanticenterprisesocialsoftware.<br />09.09.11<br />www.lassoproject.org<br />
    29. 29. Communicate about social objects<br />29<br />09.09.11<br />www.lassoproject.org<br />
    30. 30. Technology<br />30<br />09.09.11<br />www.lassoproject.org<br />
    31. 31. Architecture<br />31<br />09.09.11<br />www.lassoproject.org<br />
    32. 32. External Information Sources<br />Refinder uses external information sources<br />to enrich sparse user-provided data<br />to provide focal points around which social objects gather<br />Refinder is able to send rich queries to external data sources<br />based on social objects (“things”) <br />enriched with their attributes and context<br />32<br />09.09.11<br />www.lassoproject.org<br />
    33. 33. Contextualized Social Objects<br />Context of objects consists of:<br />Static context:<br />Characteristics, attributes<br />Relations to other objects<br />User comments<br />Dynamic context:<br />Determined based on usage tracking<br />Optional user context elicitation module is under development<br />33<br />09.09.11<br />www.lassoproject.org<br />
    34. 34. Integrating Linked Data<br />Refinder is able to load any kind of RDF descriptions about resources.<br />Refinder interprets rdf:type to determine how resources are displayed and ranked<br />Each resource is indexed <br />structured by property <br />fulltext<br />Share, comment, connect, … LOD resources<br />09.09.11<br />www.lassoproject.org<br />34<br />
    35. 35. Example: Linked Open Data (DBpedia)<br />Refinder analyzes a social object and its context and generates a query that is sent to DBpedia.<br />Ranked results are presented to the user and can be imported and connected with one mouse click.<br />35<br />09.09.11<br />www.lassoproject.org<br />
    36. 36. Example: Enterprise Thesaurus<br />Poolparty Thesaurus offers an extraction & recommendation API, powered by LASSO research results <br />Refinder sends contextualized queries to Poolparty and allows users to annotate social objects with thesaurus concepts<br />36<br />http://poolparty.punkt.at/<br />09.09.11<br />www.lassoproject.org<br />
    37. 37. LASSO Results in Refinder<br />Gnowsis work in LASSO focusses on the improvement of the recommendation precision.<br />Development of context elicitation algorithms<br />Static: analyze existing objects and their relationships<br />Dynamic: analyze user behavior and usage patterns<br />Integration of contextualized lookup and alignment services into the Refinder platform.<br />37<br />09.09.11<br />www.lassoproject.org<br />
    38. 38. Try it out!<br />Register for free at www.getrefinder.com<br />Contact:<br />bernhard.schandl@gnowsis.com<br />Twitter: @refinder<br />38<br />09.09.11<br />www.lassoproject.org<br />
    39. 39. 09.09.11<br />www.lassoproject.org<br />39<br />Thank you<br />Gnowsis - Refinderwww.getrefinder.com<br />Know Center Grazhttp://know-center.tugraz.at/<br />Neurovationhttp://neurovation.net<br />Semantic Web Company – PoolPartyhttp://poolparty.biz<br />