Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

  • 746 views
Uploaded on

http://www.surfacetreatments.it/thinfilms ...

http://www.surfacetreatments.it/thinfilms

An Approach to Chemical Free Surface Processing for High Gradient SRF Cavities (Frederick Mako - 30')
Speaker: Frederick Mako - FM Technologies | Duration: 30 min.
Abstract
Frederick Mako1, Ph.D., Bing Xiao1, Ph.D. and Larry Phillips2, Ph.D.

Chemical treatment such as buffered chemical polishing (BCP) or electro polishing (EP) followed by high pressure rinsing (HPR) of niobium (Nb) superconducting RF (SRF) cavities is expensive and complex multistep process. Furthermore, the cavity RF surfaces after the treatment still have numerous bubbles and pits that result from welding. These quench-producing weld defects together with the particulate contamination, result in significant scatter of the multi-cell Nb SRF cavities performance characteristics. This scatter is the major problem in the current manufacturing of the Nb SRF cavities. FM Technologies proposes a new approach to chemical-free processing for multi-cell Nb SRF cavities using an internal electron beam (IEB). Specifically, FMT proposes to develop a new electron gun system that will perform electron beam melting over the entire interior surface of Nb SRF cavities to produce a smooth surface, free from voids, bubbles, and other imperfections. This may allow manufacturing of the Nb SRF cavities with a reduction in the above chemical treatment procedures and increase the cavities high gradient performance. FM Technologies will design, build, test the new IEB system and process samples/cavities and Thomas Jefferson Laboratory will measure RF performance of processed samples/cavities. Preliminary electron beam melting results will be presented. 1FM Technologies, Inc., Chantilly, VA, USA, 2Thomas Jefferson Laboratory, Newport News, VA, USA

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
746
On Slideshare
745
From Embeds
1
Number of Embeds
1

Actions

Shares
Downloads
9
Comments
0
Likes
0

Embeds 1

http://www.slashdocs.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. An Approach to Chemical Free Surface Processing for High Gradient SuperconductingRF CavitiesFrederick Mako1, Ph.D., Bing Xiao1, Ph.D. and Larry Phillips2, Ph.D., William Clemens21FM Technologies, Inc., Chantilly, VA, USA, 2Thomas Jefferson Laboratory, Newport News, VA, USAWork Supported by US DOE under SBIR
  • 2. Seven-Cell Nb SRF Cavity at Thomas Jefferson National Accelerator Facility.
  • 3. 1 mm
    1 mm
    Electron beam weld
    1 mm
    1 mm
    Edge of electron beam weld
    Pictures Show Typical Defects Occurring Inside The Nb SRF Cavity Cells Around The Equator EBW Overlaps And Remaining After The Chemical Treatment
    Outstanding irregularity (step) near equator
    EBW overlap of cell#7 from waveguide.
    Two other cells have less pronounced feature.
    Four other cells have no recognizable feature.
    step
    Many “bubbles” sporadically present inside the weld.
    Many apparent “deep pits” in heat affected zone.
  • 4. Study of Beam Processing for Cavities
    Objectives:
    Achieve a Smooth Surface with Minimal Defects and Impurities
    Achieve a Low Strain Surface to Reduce Corrosion
    Final Goal is to Attain Reproducible High Q (>1010) and High Field (40MV/m) Cavities
  • 5. Electron Beam Melted Nb Samples Using J-lab SCIAKY Welder
    Each single pass melt region is about 6 mm x 74 mm x 0.1-0.2mm deep.
    A 10 kHz circular to elliptical raster with 0.5 mm diameter 50 keV beam was used.
    Beam current and translation rates varied from 20-250mA and 5-20 inches/minute.
    28 plates of Nb with dimensions 3 mm thick x 25.4 mm wide x 88.9 mm long.
    25 mm
  • 6. Magnification of Melt Zone
    HIROX digital microscope view of sample #6.
    The bottom half of the image shows the smooth melted region that highlights the grain size of about 300-400 µm, while the upper half of the image shows the rough un-melted small grain region.
    Un-Melted Region
    Melted Region
  • 7. Grain Reference Orientation Deviation (GROD) Map for Nb Flat Sample #7
    Both samples #6 and #7 show GROD in the range of 0 – 3° over a distance of 100 – 300 μm.
    40mA and 10in. /min.
    No chemical etching has occurred.
  • 8. Grain Reference Orientation Deviation (GROD) Map for Nb Flat Sample #15
    Samples #14 and #15 show less lattice distortion compared to samples #6 and #7 as measured by GROD from 0 – 2° with the majority of the distortion less than 1°over 100 – 300 μm.
    40mA and 18in./min.
    No chemical etching has occurred.
  • 9. Grain Reference Orientation Deviation (GROD) Map for Nb Pipe Sample #16
    The pipe sample #16 that utilized a double low current (24 mA & 18in./min.) e-beam pass also shows compared to samples #6 and #7with very little lattice distortion as indicated by its GROD with the majority of the distortion less than 1° over 100 – 300 μm.
    No chemical etching has occurred.
  • 10. Grain Reference Orientation Deviation (GROD) Map for Deep Drawn Half Cell
    The section is taken from 3 mm from the equator.
    The GROD map shows extreme lattice distortion up to an angular rotation of about 20 degrees.
    No chemical etching has occurred.
    Courtesy of Dr. Roy Crooks of Black Laboratories
  • 11. Comparison of Grain Deviation for E-Beam Processed Nb vs. Deep Drawn Nb Cell
  • 12. Comparison of Grain Deviation for Various E-Beam Processed Nb Samples
  • 13. HIROX Imaging for Sample #15
    Sample #15 shows very smooth HIROX and AFM images in the melt zone.
  • 14. AFM of Sample #15
    AFM RMS value of less than 3 nm, which is 1/20 of what can be accomplished by electro-polishing.
  • 15. Magnification of Melt Zone
    HIROX digital microscope view of sample #6.
    Grain boundary steps show up in higher heating rate samples.
    Un-Melted Region
    Grain Boundary Step
    Melted Region
  • 16. AFM of Sample #6 at Grain Boundary
  • 17. Chemical Free Half-Cell Processed in the J-lab E-beam SCIAKY Welder
    Electron Gun
    Half Cell
  • 18. Finished E-Beam Processed Half-Cell
    The beam parameters were: 40 mA, 0.5mm diameter beam, travelling at 18 inches per minute, the melting diameter is about 6 mm with a circular pattern at 10 kHz.
  • 19. Summary of Beam Parameters for A Smooth Low Strain Surface
    Both HIROX & AFM suggest that a smoother surface is attained with lower heating rates
    EBSD (GROD) maps suggest a lower strain surface is attained at lower heating rates
    Desired Beam Parameters are: 50keV, 40mA, 46cm/min. in single pass or 50keV, 24mA,46cm/min. in double pass
  • 20. Electron Gun and Beam Transport Design
    Two Strategies: Ballistic Focusing and Magnetized Beam
    CRITERIA:
    Can process from iris to equator and the circumference
    Prevent Nb vapor arcing
    Can tolerate beam induced thermal radiation & filament heat load
    Beam Parameters ~50kV, up to 200mA, spot ~1mm
    Focal Length 30-100cm.
  • 21. Ballistic Focusing Gun-For In or Out of Cavity Processing
    Quadrapole Provides Rastering, Circle or Ellipse, V=0
    Grid Provides 1st Focus, V=-50 to -51kV, Current Not Effected
    Anode, V=0
    Cathode & Filament,
    V=-50kV
    46mm
    Diameter
    Magnetic & Radiative Heat Shield, Water Cooled,V=0
    Dipole w Soft Iron Case provides 2nd Focus, V=0
    High Voltage Insulator
  • 22. Ballistic Focusing Gun-Electron Beam Trajectory
    Helmholtz Coils Provide R-Z Beam Scanning from Iris to Equator.
    q Scanning Provided by Rotating either Gun or Cavity or Helmholtz coils on Axis.
  • 23. Magnetized E-Beam GunSimple Gun Design Only Needs Cathode, Grid & Anode
  • 24. Magnetized E-Beam Gun-Electron Beam Trajectory
    Beam location is dependent on bucking coil position.
    50 keV, 50 mA, 3 mm diameter.
    Also, beam position can be adjusted by changing the bucking coil current.
  • 25. Summary and Conclusions
    Beam Parameters Have Been Determined to Give a Smooth Low Strain Surface using a Conventional Rastered Beam
    Two Gun Designs Examined (Ballistic & Magnetized Beams) to Meet the Above Beam Conditions With & Without Rastering for Both Internal & External Gun Operation
    Maintaining a Constant Beam Power Density on the Cavity Surface Will Require Computer Controls
    Further Sample Studies are Required Before Gun Selection