• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
evolucion de los computadores
 

evolucion de los computadores

on

  • 1,697 views

henry jimenez

henry jimenez
jhainer ropero
algoritmos y fundamentos de programacion grupo 01

Statistics

Views

Total Views
1,697
Views on SlideShare
1,697
Embed Views
0

Actions

Likes
0
Downloads
24
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    evolucion de los computadores evolucion de los computadores Presentation Transcript

    • EVOLUCION DE LOS COMPUTADORES
      HENRY JIMENEZ OVIEDOJHAINEr ROPERO GUTIERREZalgoritmos y fundamentos de programacionGRUPO-01
    • Historia y evolución del computador
      Por siglos los hombres han tratado de usar fuerzas y artefactos de diferente tipo para realizar sus trabajos, para hacerlos más simples y rápidos. La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo.
    • El Ábaco
      Dos principios han coexistido respecto a este tema. Uno es usar cosas para contar, ya sea los dedos, piedras, conchas, semillas. El otro es colocar esos objetos en posiciones determinadas. Estos principios se reunieron en el ábaco, instrumento que sirve hasta el día de hoy, para realizar complejos cálculos aritméticos con enorme rapidez y precisión.
      En el Siglo XVII en occidente se encontraba en uso la regla de cálculo, calculadora basada en las investigaciones de Nappier, Gunther y Bissaker. John Napier (1550-1617) descubre la relación entre series aritmética y geométricas, creando tablas que llama logaritmos. Edmund Gunter se encarga de marcar los logaritmos de Napier en líneas. Bissaker por su parte coloca las líneas de Nappier y Gunter sobre un pedazo de madera, creando de esta manera la regla de cálculo. Durante más de 200 años, la regla de cálculo es perfeccionada, convirtiéndose en una calculadora de bolsillo, extremadamente versátil.
      Por el año 1700 las calculadoras numéricas digitales, representadas por el ábaco y las calculadoras análogas representadas por la regla de cálculo, eran de uso común en toda Europa.
    • La Pascalina
      La primera máquina de calcular mecánica, un precursor del ordenador digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar.
      El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la informaciónestadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.
    • La máquina analítica
      También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemasmatemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operacionesmatemáticas y una impresora para hacer permanente el registro.
    • Primeros Ordenadores
      Los ordenadores analógicos comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.
    • Ordenadores electrónicos
      1944 marca la fecha de la primera computadora, al modo actual, que se pone en funcionamiento. Es el Dr. Howard Aiken en la Universidad de Harvard, Estados Unidos, quien la presenta con el nombre de Mark I. Es esta la primera máquina procesadora de información. La Mark I funcionaba eléctricamente, instrucciones e información se introducen en ella por medio de tarjetas perforadas y sus componentes trabajan basados en principios electromecánicos. A pesar de su peso superior a 5 toneladas y su lentitud comparada con los equipos actuales, fue la primer máquina en poseer todas las características de una verdadera computadora.
    • La primera computadora electrónica fue terminada de construir en 1946, por J.P.Eckert y J.W.Mauchly en la Universidad de Pensilvania, U.S.A. y se le llamó ENIAC. Con ella se inicia una nueva era, en la cual la computadora pasa a ser el centro del desarrollo tecnológico, y de una profunda modificación en el comportamiento de las sociedades.
      Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y con independencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU). Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico electrónico (en inglés ENIAC, Electronic Numerical Integrator and Computer) en 1945. El ENIAC, que según se demostró se basaba en gran medida en el ordenador Atanasoff-Berry (en inglés ABC, Atanasoff-Berry Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde.
    • Circuitos integrados
      A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.
    • generaciones
      Teniendo en cuenta las diferentes etapas de desarrollo que tuvieron las computadoras, se consideran las siguientes divisiones como generaciones aisladas con características propias de cada una, las cuáles se enuncian a continuación.
    • Primera Generación (1951-1958)(Bulbos)
      Características Principales:
      Sistemas constituidos por tubos de vacío, desprendían bastante calor y tenían una vida relativamente corta.
      Máquinas grandes y pesadas. Se construye el ordenador ENIAC de grandes dimensiones (30 toneladas).
      Alto consumo de energía. El voltaje de los tubos era de 300 v y la posibilidad de fundirse era grande.
      Almacenamiento de la información en tambor magnético interior. Un tambor magnético disponía de su interior del ordenador, recogía y memorizaba los datos y los programas que se le suministraban.
      Continuas fallas o interrupciones en el proceso.
      Requerían sistemas auxiliares de aire acondicionado especial.
      Programación en lenguaje máquina, consistía en largas cadenas de bits, de ceros y unos, por lo que la programación resultaba larga y compleja.
      Alto costo.
      Uso de tarjetas perforadas para suministrar datos y los programas.
      Computadora representativa UNIVAC y utilizada en las elecciones presidenciales de los E.U.A. en 1952.
      Fabricación industrial. La iniciativa se aventuro a entrar en este campo e inició la fabricación de computadoras en serie.
    • Segunda generación (1959-1964)(Transistores)
      Características Principales:
      Transistor como potente principal. El componente principal es un pequeño trozo de semiconductor, y se expone en los llamados circuitos transistorizados.
      Disminución del tamaño.
      Disminución del consumo y de la producción del calor.
      Su fiabilidad alcanza metas inimaginables con los efímeros tubos al vacío.
      Mayor rapidez, la velocidad de las operaciones ya no se mide en segundos sino en ms.
      Memoria interna de núcleos de ferrita.
      Instrumentos de almacenamiento: cintas y discos.
      Mejoran los dispositivos de entrada y salida, para la mejor lectura de tarjetas perforadas, se disponía de células fotoeléctricas.
      Introducción de elementos modulares.
      Aumenta la confiabilidad.
      Las impresoras aumentan su capacidad de trabajo.
      Lenguajes de programación mas potentes, ensambladores y de alto nivel (fortran, cobol y algol).
      Aplicaciones comerciales en aumento, para la elaboración de nóminas, facturación y contabilidad, etc.
    • Tercera generación (1964 - 1971)Circuito integrado (chips)
      Características Principales:
      Circuito integrado desarrollado en 1958 por Jack Kilbry.
      Circuito integrado, miniaturización y reunión de centenares de elementos en una placa de silicio o (chip).
      Menor consumo de energía.
      Apreciable reducción de espacio.
      Aumento de fiabilidad y flexibilidad.
      Aumenta la capacidad de almacenamiento y se reduce el tiempo de respuesta.
      Generalización de lenguajes de programación de alto nivel.
      Compatibilidad para compartir software entre diversos equipos.
    • Computadoras en Serie 360 IBM.
      Teleproceso: Se instalan terminales remotas, que accesen la Computadora central para realizar operaciones, extraer o introducir información en Bancos de Datos, etc...
      Multiprogramación: Computadora que pueda procesar varios Programas de manera simultánea.
      Tiempo Compartido: Uso de una computadora por varios clientes a tiempo compartido, pues el aparato puede discernir entre diversos procesos que realiza simultáneamente.
      Renovación de periféricos.
      Instrumentación del sistema.
      Ampliación de aplicaciones: en Procesos Industriales, en la Educación, en el Hogar, Agricultura, Administración, Juegos, etc.
      La mini computadora.
    • Cuarta generación (1971-1982)(Microcircuito integrado)
      Características Principales
      Microprocesador: Desarrollado por Intel Corporation a solicitud de una empresa Japonesa (1971).
      El Microprocesador: Circuito Integrado que reúne en la placa de Silicio las principales funciones de la Computadora y que va montado en una estructura que facilita las múltiples conexiones con los restantes elementos.
      Se minimizan los   circuitos, aumenta la capacidad de almacenamiento.
      Reducen el tiempo de respuesta.
      Gran expansión del uso de las Computadoras.
      Memorias electrónicas más rápidas.
      Sistemas de tratamiento de bases de datos.
      Generalización de las aplicaciones: innumerables y afectan prácticamente  a todos los campos de la actividad humana: Medicina, Hogar, Comercio, Educación, Agricultura, Administración, Diseño,   Ingeniería, etc...
      Multiproceso.
      Microcomputador
    • Generación posterior y la inteligencia artificial (1982)
      El propósito de la Inteligencia Artificial es equipar a las Computadoras con "Inteligencia Humana" y con la capacidad de razonar para encontrar soluciones.  Otro factor fundamental del diseño, la capacidad de la Computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la Computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la Computadora aprenderá a partir de sus propias experiencias usará sus Datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones.  El conocimiento recién adquirido le servirá como base para la próxima serie de soluciones.
    • Características principales
      Mayor velocidad.
      Mayor miniaturización de los elementos.
      Aumenta la capacidad de memoria.
      Multiprocesador (Procesadores interconectados).
      Lenguaje Natural.
      Lenguajes de programación: PROGOL (Programming Logic) y LISP (List Processing).
      Máquinas activadas por la voz que pueden responder a palabras habladas en diversas lenguas y dialectos.
      Capacidad de traducción entre lenguajes que permitirá la traducción instantánea de lenguajes hablados y escritos.
      Elaboración inteligente del saber y número tratamiento de datos. 
      Características de procesamiento similares a las secuencias de procesamiento Humano.
    • En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados.
      Japón lanzó en 1983 el llamado "programa de la quinta generación de computadoras", con los objetivos explícitos de producir máquinas con innovaciones reales en los criterios mencionados. Y en los Estados Unidos ya está en actividad un programa en desarrollo que persigue objetivos semejantes, que pueden resumirse de la siguiente manera:
      Procesamiento en paralelo mediante arquitecturas y diseños especiales y circuitos de gran velocidad.
      Manejo de lenguaje natural y sistemas de inteligencia artificial.
      El futuro previsible de la computación es muy interesante, y se puede esperar que esta ciencia siga siendo objeto de atención prioritaria de gobiernos y de la sociedad en conjunto.
    • Inicios de la computación
      Aunque el computador personal fue creado en 1981, sus inicios se remontan a varias décadas atrás y sus antecedentes a hace más de cuatro mil años. Esto, porque el origen de la informática no es la electrónica sino el perfeccionamiento de los cálculos matemáticos, que con el tiempo permitió el desarrollo del sistema binario, el lenguaje en que se programan los computadores, que está basado en la combinación de números ceros y unos.
    • 2500 a.C. - El antecedente más remoto es el ábaco, desarrollado en China. Fue el primer instrumento utilizado por el hombre para facilitar sus operaciones de cálculo.
      2000 a.C. - En el "I-Ching, o Libro de las mutaciones", también de origen chino, se encuentra la primera formulación del sistema binario.
      600 a.C. - El astrónomo, matemático y filósofo griego Tales de Mileto describió algunos aspectos de la electricidad estática. De sus escritos proviene la palabra electrón, que se usa para designar a las partículas negativas del átomo.
      500 a.C. - Los romanos usaron ábacos con piedrecitas, a las que llamaban cálculos, que eran desplazadas sobre una tabla con canales cifrados con sus números (I, V, X, L, C, D, M).
      1633 - El inglés William Oughtred creó un instrumento que hoy se conoce como regla de cálculo, utilizado hasta hace unos años por los ingenieros.
      1642 - El francés Blaise Pascal (1623-1662) inventó y construyó la primera sumadora mecánica. La pascalina hacía sumas y restas. Funcionaba gracias a una serie de ruedas contadoras con diez dientes numerados del 0 al 9. El padre de Pascal era recaudador de impuestos, así que fue el primero en usarla.
    • 1671 - El filósofo y matemático alemán Gottfried Leibniz desarrolló una máquina multiplicadora.
      1833 - El profesor de matemáticas de la Universidad de Cambridge Charles Babbage (1792-1871) ideó la primera máquina procesadora de información. Algo así como la primera computadora mecánica programable. Pese a que dedicó casi cuarenta años a su construcción, murió sin terminar su proyecto.
      Babbage usaba cartones perforados para suministrarle datos a su máquina (había copiado la idea del telar del francés Joseph Marie Jacquard, inventado en 1801), que se convertirían en instrucciones memorizadas; algo así como los primeros programas.
      Esperaba lograr imprimir la información registrada, obtener resultados y volver a ingresarlos para que la máquina los evaluara y dedujera qué se debía hacer después.
      La evaluación y la retroalimentación se convertirían en la base de la cibernética, que nacería un siglo más tarde.
      1847 - El británico George Boole desarrolló un nuevo tipo de álgebra (álgebra de Boole) e inició los estudios de lógica simbólica. En 1847 publicó "El análisis matemático del pensamiento" y en 1854 "Las leyes del pensamiento".
    • 1890 - Los cartones perforados y un primitivo aparato eléctrico se usaron para clasificar por sexo, edad y origen a la población de Estados Unidos. Esta máquina del censo fue facilitada por el ingeniero Herman Hollerith, cuya compañía posteriormente se fusionó (1924) con una pequeña empresa de Nueva York, creando la International Business Machines (IBM), empresa que un siglo más tarde revolucionó el mercado con los computadores personales o PC.
      1889 - Solo a fines del siglo XIX se inventó una máquina calculadora que incorporó las cuatro operaciones básicas (suma, resta, multiplicación y división) y que lentamente se empezó a producir de manera más masiva. Esta máquina solo podía realizar una operación a la vez y no tenía memoria.
      1893 - Entre 1893 y 1920, Leonardo Torres y Quevedo creó en España varias máquinas capaces de resolver operaciones algebraicas. Posteriormente construyó la primera máquina capaz de jugar ajedrez.
      1920 - presentó en París el "aritmómetro electromecánico", que consistía en una calculadora conectada a una máquina de escribir, en la que se tecleaban los números y las operaciones. Una vez hecho el cálculo, la máquina entregaba automáticamente el resultado. Este aparato fue la primera versión de una calculadora digital.
      1934-1939 - Konrad Suze construyó en Alemania dos máquinas electromecánicas de cálculo que se acercaban bastante a lo que sería el primer computador. La Z1 tenía un teclado y algunas lámparas que indicaban valores binarios. La Z2 fue una versión mejorada que utilizaba electromagnetismo.
    • 1937 - Claude Shannon demostró que la programación de los futuros computadores era más un problema de lógica que de aritmética, reconociendo la importancia del álgebra de Boole. Además, sugirió que podían usarse sistemas de conmutación como en las centrales telefónicas, idea que sería fundamental para la construcción del primer computador.
      Más adelante, junto con Warren Weaver, Shannon desarrolló la teoría matemática de la comunicación, hoy más conocida como la "teoría de la información", estableciendo los conceptos de negentropía, que se refiere a que la información reduce el desorden, y la unidad de medida del bit -en dígitos binarios- utilizada actualmente tanto en las telecomunicaciones como en la informática.
      1939 - En Estados Unidos, George Stibitz y S.B. Williams, de los laboratorios Bell, construyeron una calculadora de secuencia automática que utilizaba interruptores ordinarios de sistemas de conmutación telefónica.
    • La evolución de los microprocesadores
      El microprocesador es un producto de la computadora y la tecnología semiconductora. Su desarrollo se eslabona desde la mitad de los años 50; estas tecnologías se fusionaron a principios de los años 70, produciendo el llamado microprocesador.
      La computadora digital hace cálculos bajo el control de un programa. La manera general en que los cálculos se han hecho es llamada la arquitectura de la computadora digital. Así mismo la historia de circuitos de estado sólido nos ayuda también, porque el microprocesador es un circuito con transistores o microcircuito LSI (Alta escala de integración)
      El mapa de la figura, mostrada al final de esta sección, muestra los sucesos importantes de éstas dos tecnologías que se desarrollaron en las últimas cinco décadas. Las dos tecnologías iniciaron su desarrollo desde la segunda guerra mundial; en este tiempo los científicos desarrollaron computadoras especialmente para empleo militar. Después de la guerra, a mediados del año de 1940 la computadora digital fue desarrollada para propósitos científicos y civiles.
      La tecnología de circuitos electrónicos avanzó y los científicos hicieron grandes progresos en el diseño de dispositivos físicos de Estado Sólido. En 1948 en los laboratorios Bell crearon el Transistor.
    • Breve Historia de los Microprocesadores
      La tecnología de los circuitos de estado sólido evolucionó en la década de los años 50. El empleo del silicio, de bajo costo y con métodos de producción masiva, hicieron al transistor ser el más usado para el diseño de circuitos.
      A principios de los años 60, el arte de la construcción de computadoras de estado sólido se incrementó y surgieron las tecnologías en circuitos digitales como: RTL (Lógica Transistor Resistor), DTL (Lógica Transistor Diodo), TTL (Lógica Transistor Transistor), ECL (Lógica Complementada Emisor).
      A mediados de los años 60 se producen las familias de lógica digital, dispositivos en escala SSI y MSI que corresponden a baja y mediana escala de integración de componentes en los circuitos de fabricación. A finales de los años 60's y principios de los años 70 surgieron los sistemas a alta escala de integración o LSI. La tecnología LSI fue haciendo posible más y más circuitos digitales en un circuito integrado.
      Las primeras calculadoras electrónicas requerían de 75 a 100 circuitos integrados. Después se dio un paso importante en la reducción de la arquitectura de la computadora a un circuito integrado simple, resultando un circuito que fue llamado el microprocesador, unión de las palabras "Micro" del griego μικρο-, "pequeño" y procesador. Sin embargo, es totalmente válido usar el término genérico procesador, dado que con el paso de los años, la escala de integración se ha visto reducida de micrométrica a nanométrica
    • 1971: MICROPROCESADOR 4004
      El 4004 fue el primer microprocesador de Intel. Este descubrimiento impulsó la calculadora de Busicom y pavimentó la manera para integrar inteligencia en objetos inanimados así como la computadora personal.
      1972: MICROPROCESADOR 8008
      Codificado inicialmente como 1201, fue pedido a Intel por Computer Terminal Corporation para usarlo en su terminal programable Datapoint 2200, pero debido a que Intel terminó el proyecto tarde y a que no cumplía con la expectativas de Computer Terminal Corporation, finalmente no fue usado en el Datapoint 2200. Posteriormente Computer Terminal Corporation e Intel acordaron que el i8008 pudiera ser vendido a otros clientes.
      1974: MICROPROCESADOR 8080
      Los 8080 se convirtieron en los cerebros de la primera computadora personal la Altair 8800 de MITS, según se alega, nombrada en base a un destino de la Nave Espacial "Starship" del programa de televisión Viaje a las Estrellas, y el IMSAI 8080, formando la base para las máquinas que corrían el sistema operativo CP/M. Los fanáticos de las computadoras podían comprar un equipo Altair por un precio (en aquel momento) de $395. En un periodo de pocos meses, vendió decenas de miles de estas computadoras personales.
    • 1978: MICROPROCESADOR 8086-8088
      Una venta realizada por Intel a la nueva división de computadoras personales de IBM, hizo que los cerebros de IBM dieran un gran golpe comercial con el nuevo producto para el 8088, el IBM PC. El éxito del 8088 propulsó a Intel en la lista de las 500 mejores compañías de la prestigiosa revista Fortune, y la revista nombró la compañía como uno de Los triunfos comerciales de los sesenta.
      1982: MICROPROCESADOR 286
      El 286, también conocido como el 80286, era el primer procesador de Intel que podría ejecutar todo el software escrito para su predecesor. Esta compatibilidad del software sigue siendo un sello de la familia de Intel de microprocesadores. Luego de 6 años de su introducción, había un estimado de 15 millones de 286 basados en computadoras personales instalados alrededor del mundo.
      1985: EL MICROPROCESADOR INTEL 386
      El procesador Intel 386 ofreció 275 000 transistores, más de 100 veces tantos como en el original 4004. El 386 añadió una arquitectura de 32 bits, poseía capacidad multitarea, que significa que podría ejecutar múltiples programas al mismo tiempo y una unidad de traslación de páginas, lo que hizo mucho más sencillo implementar sistemas operativos que emplearan memoria virtual.
    • 1989: EL DX CPU MICROPROCESADOR INTEL 486
      La generación 486 realmente significó que el usuario contaba con una computadora con muchas opciones avanzadas, entre ellas, un conjunto de instrucciones optimizado, una unidad de coma flotante y un caché unificado integrados en el propio circuito integrado del microprocesador y una unidad de interfaz de bus mejorada. Estas mejoras hacen que los i486 sean el doble de rápidos que un i386 e i387 a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático integrado, el cual acelera las tareas del micro, porque ofrece la ventaja de que las operaciones matemáticas complejas son realizadas (por el coprocesador) de manera independiente al funcionamiento del procesador central (CPU).
      1991: AMD AMx86
      Procesadores lanzados por AMD 100% compatible con los códigos de Intel de ese momento, ya que eran clones, pero llegaron a superar incluso la frecuencia de reloj de los procesadores de Intel a precios significativamente menores. Aquí se incluyen las series Am286, Am386, Am486 y Am586
    • 1993: PROCESADOR DE PENTIUM
      El procesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez gracias a sus dos pipeline de datos de 32bits cada uno, uno equivalente al 486DX(u) y el otro equivalente a 486SX(u). Además, poseía un bus de datos de 64 bits, permitiendo un acceso a memoria 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no únicamente brindaban al usuario un mejor manejo de aplicaciones multimedia, como por ejemplo, la lectura de películas en DVD, sino que se ofrecían en velocidades de hasta 233 MHz, incluyendo una versión de 200 MHz y la más básica proporcionaba unos 166 MHz de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción.
      1995: PROCESADOR PENTIUM PROFESIONAL
      Lanzado al mercado para el otoño de 1995 el procesador Pentium Pro se diseña con una arquitectura de 32 bits, su uso en servidores, los programas y aplicaciones para estaciones de trabajo (redes) impulsan rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo iba más despacio que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. Cada procesador Pentium Pro estaba compuesto por unos 5,5 millones de transistores.
    • 1996: AMD K5
      Habiendo abandonado los clones se fabricada AMD de tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora que transforma todos los comandos x86 de la aplicación en comandos RISC. Este principio se usa hasta hoy en todos los CPUs x86. En todos los aspectos era superior el K5 al Pentium, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando sin éxito y fue retrasado 1 año de su salida, a razón de éste retraso, sus frecuencias de trabajo eran inferiores a la competencia y por tanto, los fabricantes de PC dieron por hecho que era peor.
      1997: PROCESADOR PENTIUM II
      El procesador de 7,5 millones de transistores Pentium II, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, pueden revisar y pueden compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica, el enviar video a través de las líneas normales del teléfono mediante el Internet se convierte en algo cotidiano.
    • 1996: AMD K6 Y AMD K6-2
      Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a Intel en el terreno de los Pentium MMX, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador que casi se pone a la altura del mismísimo Pentium II por un precio muy inferior a sus análogos. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los mas de 500 MHz y con el juego de instrucciones MMX, que ya se han convertido en estándar.
      Más adelante lanzó una mejora de los K6, los K6-2 a 250 nanómetros, para seguir compitiendo con lso Pentium II, siéndo éste último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introducen un juego de instrucciones SIMD denominado 3DNow!
      1998: EL PROCESADOR PENTIUM II XEON
      Los procesadores Pentium II Xeon se diseñan para cumplir con los requisitos de desempeño en computadoras de medio-rango, servidores más potentes y estaciones de trabajo (workstations). Consistente con la estrategia de Intel para diseñar productos de procesadores con el objetivo de llenar segmentos de los mercados específicos, el procesador Pentium II Xeon ofrece innovaciones técnicas diseñadas para las estaciones de trabajo (workstations) y servidores que utilizan aplicaciones comerciales exigentes como servicios de Internet, almacenaje de datos corporativo, creaciones digitales y otros. Pueden configurarse sistemas basados en el procesador para integrar de cuatro o ocho procesadores y más allá de este número.
    • 1999: EL PROCESADOR CELERON
      Continuando la estrategia de Intel, en el desarrollo de procesadores para los segmentos del mercado específicos, el procesador Intel Celeron es el nombre que lleva la línea de procesadores de bajo coste de Intel. El objetivo era poder, mediante ésta segunda marca, penetrar en los mercados impedidos a los Pentium, de mayor rendimiento y precio. Se diseña para el añadir valor al segmento del mercado de los PC. Proporcionó a los consumidores una gran actuación a un bajo coste, y entregó un desempeño destacado para usos como juegos y el software educativo.
      1999: AMD ATHLON K7 (CLASSIC Y THUNDERBIRD)
      Procesador compatible con la arquitectura x86. Internamente el Athlon es un rediseño de su antecesor, al que se le mejoró substancialmente el sistema de coma flotante (ahora son 3 unidades de coma flotante que pueden trabajar simultáneamente) y se le aumentó la memoria caché de primer nivel (L1) a 128 KB (64 KB para datos y 64 KB para instrucciones). Además incluye 512 KB de caché de segundo nivel (L2). El resultado fue el procesador x86 más potente del momento
    • 1999: PROCESADOR PENTIUM III
      El procesador Pentium III ofrece 70 nuevas instrucciones (Internet Streaming, las extensiones de SIMD las cuales refuerzan dramáticamente el desempeño con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, video y desempeño en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del desempeño en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (llenas de gráficas) como las de los museos online, tiendas virtuales y transmitir archivos video de alta calidad. El procesador incorpora 9,5 millones de transistores, y se introdujo usando en él la tecnología 250 nanómetros.
      1999: EL PROCESADOR PENTIUM III XEON
      El procesador Pentium III Xeon amplia las fortalezas de Intel en cuanto a las estaciones de trabajo (workstation) y segmentos de mercado de servidor y añade una actuación mejorada en las aplicaciones del comercio electrónico y la informática comercial avanzada. Los procesadores incorporan tecnología que refuerzan los multimedios y las aplicaciones de video. La tecnología del procesador III Xeon acelera la transmisión de información a través del bus del sistema al procesador, mejorando la actuación significativamente. Se diseña pensando principalmente en los sistemas con configuraciones de multiprocesador.
    • 2000: PENTIUM 4
      El Pentium 4 es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primer microprocesador con un diseño completamente nuevo desde el Pentium Pro. Se estreno la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6
      2001: ATHLON XP
      Cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, por eso sacó el Athlon XP. Compatibilizaba las instrucciones SSE y las 3DNow!
      2004: PENTIUM 4 (PRESCOTT)
      A principios de febrero de 2004, Intel introdujo una nueva versión de Pentium 4 denominada 'Prescott'. Primero se utilizó en su manufactura un proceso de fabricación de 90 nm y luego se cambió a 65nm. Su diferencia con los anteriores es que éstos poseen 1 MB o 2 MB de caché L2 y 16 KB de caché L1 (el doble que los Northwood), Prevención de Ejecución, SpeedStep, C1E State, un HyperThreading mejorado, instrucciones SSE3, manejo de instrucciones AMD64, de 64 bits creadas por AMD, pero denominadas EM64T por Intel, sin embargo por graves problemas de temperatura y consumo, resultaron un fracaso frente a los Athlon 64.
    • 2004: ATHLON 64
      El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits.El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,. Cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, la velocidad del mismo y su tensión se reducen.
      2006: INTEL CORE Y CORE 2 DUO
      Intel lanzó ésta gama de procesadores de doble núcleo y CPUs 2x2 MCM (Módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en el la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPUs Pentium 4/D2 La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPUs Core 2, mientras se incrementa la capacidad de procesamiento. Los CPUs de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros.
    • 2007: AMD PHENOM
      Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65 nanómetros lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45 nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la vitalización, generando un óptimo rendimiento por vatio.
      2008: INTEL CORE NEHALEM
      Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (socket 1366), y sustituido a su vez en i7, i5 e i3 (socket 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente.
    • 2008: AMD PHENOM II Y ATHLON II
      Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45 nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65 nm a los 45 nm, es que permitió aumentar la cantidad de cache L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2 MB del Phenom original a 6 MB.
      2010: INTEL CORE SANDY BRIDGE
      Los próximos procesadores de Intel de la familia core
      2011: AMD BULLDOZER
      Los próximos procesadores de AMD de la familia Fusion.
    • MEDIOS DE ALMACENAMIENTO
      El propósito de los dispositivos de almacenamiento es almacenar y recuperar la información de forma automática y eficiente. El almacenamiento se relaciona con dos procesos:
      Lectura de datos almacenados para luego transferirlos a la memoria de la computadora.
      Escritura o grabación de datos para que más tarde se puedan recuperar y utilizar.
      Los medios de almacenamiento han evolucionado en forma notable desde las primeras computadoras. En la actualidad existe una gran variedad tecnologías y dispositivos nuevos, pero el disco rígido sigue siendo el "almacén" principal de la información en la computadora.
    • Tarjeta perforada
      La tarjeta perforada es una cartulina con unas determinaciones al estar perforadas, lo que supone un código binario. Estos fueron los primeros medios utilizados para ingresar información e instrucciones a un computador en los años 1960 y 1970. Las tarjetas perforadas no solo fueron utilizadas en la informática, sino también por Joseph Marie Jacquard en los telares (de hecho, la informática adquirió las tarjetas perforadas de los telares). Con la misma lógica de perforación o ausencia de perforación, se utilizaron las cintas perforadas.
      Actualmente las tarjetas perforadas han caído en el reemplazo por medios magnéticos y ópticos de ingreso de información. Sin embargo, muchos de los dispositivos de almacenamiento actuales, como por ejemplo el CD-ROM también se basan en un método similar al usado por las tarjetas perforadas, aunque por supuesto los tamaños, velocidades de acceso y capacidad de los medios actuales no admiten comparación con las viejas tarjetas.
    • CINTAS PERFORADAS
      La cinta perforada es un método obsoleto de almacenamiento de datos, que consiste en una larga tira de papel en la que se realizan agujeros para almacenar los datos. Fue muy empleada durante gran parte del siglo XX para comunicaciones con teletipos, y más tarde como un medio de almacenamiento de datos para miniordenadores y máquinas herramienta tipo CNC.
    • CINTA MAGNETICA
      La cinta magnética es un tipo de medio o soporte de almacenamiento de información que se graba en pistas sobre una banda plástica con un material magnetizado, generalmente óxido de hierro o algún cromato. El tipo de información que se puede almacenar en las cintas magnéticas es variado, como vídeo, audio y datos.
      Hay diferentes tipos de cintas, tanto en sus medidas físicas, como en su constitución química, así como diferentes formatos de grabación, especializados en el tipo de información que se quiere grabar.
      Los dispositivos informáticos de almacenamiento masivo de datos de cinta magnética son utilizados principalmente para respaldo de archivos y para el proceso de información de tipo secuencial, como en la elaboración de nóminas de las grandes organizaciones públicas y privadas. Al almacén donde se guardan estos dispositivos se lo denomina cintoteca.
      Su uso también se ha extendido para el almacenamiento analógico de música (como el casete de audio) y para vídeo, como las cintas de VHS (véase cinta de video).
    • DISCO MAGNETICO
      Un disco magnético (flexible o duro) sirve como soporte de almacenamiento para archivos de información. Almacena los bytes de estos archivos en uno o varios sectores de pistas circulares El formateo consiste en grabar (escribir) magnéticamente los sucesivos sectores que componen cada una de las pistas de un disco o disquete, quedando así ellas magnetizadas. Luego del formateo, en cada sector quedan grabados los campos que lo constituyen, entre los cuales se halla el que permite identificar un sector mediante una serie de números, y el campo de 512 bytes reservado para datos a grabar o regrabar, lo cual tiene lugar cada vez que se ordena escribir dicho sector.
    • DISQUETE
      Un disquete o disco flexible (en inglésfloppy disk o diskette) es un medio o soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una cubierta de plásticocuadrada o rectangular.
      Los disquetes se leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). En algunos casos es un disco menor que el CD. La disquetera es el dispositivo o unidad lectora/grabadora de disquetes, y ayuda a introducirlo para guardar la información.
      Este tipo de dispositivo de almacenamiento es vulnerable a la suciedad y los campos magnéticos externos, por lo que, en muchos casos, deja de funcionar con el tiempo.
    • DISCO DURO
      Un disco duro o disco rígido (en inglés Hard Disk Drive, HDD) es un dispositivo no volátil, que conserva la información aún con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics(IDE, también llamado ATA); SCSI generalmente usado en servidores; Serial ATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
    • Disco duro portátil
      Un disco duro portátil (o disco duro externo) es un disco duro que es fácilmente transportable de un lado a otro sin necesidad de consumir energía eléctrica o batería.
      Desde que los CD-R y CD-RW se han extendido como almacenamiento barato, se ha cambiado la filosofía de tener el mismo tipo de almacenamiento de disco intercambiables tanto para almacenamiento como para copia de seguridad o almacenamiento definitivo. Antes normalmente eran discos magnéticos o magneto-ópticos. Ahora se tiende a tener el almacenamiento óptico para un uso más definitivo y otro medio sin discos intercambiable para transporte. Este el caso de las memorias USB y los discos duros portátiles.
    • Disco óptico
      Un disco óptico es un formato de almacenamiento de información digital, que consiste en un disco circular en el cual la información se codifica, se guarda y almacena, haciendo unos surcos microscópicos con un láser sobre una de las caras planas que lo componen.
    • TARJETA DE MEMORIA
      Una tarjeta de memoria o tarjeta de memoria flash es un dispositivo de almacenamiento que conserva la información que le ha sido almacenada de forma correcta aun con la pérdida de energía, es decir, es una memoria no volátil.
    • Secure Digital
      Secure Digital (SD) es un formato de tarjeta de memoria Inventado por Panasonic. Se utiliza en dispositivos portátiles tales como cámaras fotográficas digitales, PDAs, teléfonos móviles e incluso videoconsolas (tanto de sobremesa como la Wii como portátiles como la Nintendo DSi), entre muchos otros.
      Estas tarjetas tienen unas dimensiones de 32 mm x 24 mm x 2,1 mm. Existen dos tipos: unos que funcionan a velocidades normales, y otros de alta velocidad que tienen tasas de transferencia de datos más altas. Algunas cámaras fotográficas digitales requieren tarjetas de alta velocidad para poder grabar vídeo con fluidez o para capturar múltiples fotografías en una sucesión rápida.
    • OTRAS UNIDADES DE ALMACENAMIENTO
      MultiMediaCard
      Memory Stick
      CompactFlash
      Microdrive
      SmartMedia
      xD-Picture Card
      Discos de estado sólido