Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- 3.2.1 electomagnetic induction by JohnPaul Kennedy 1113 views
- Simple Harmonic Motion by walt sautter 54777 views
- Physics Chapter 9-Simple Harmonic M... by Muhammad Solehin 15655 views
- Applications Of Eddy Current Testing by markkerry974 124 views
- Simple Harmonic Motion by Calvert County Pu... 2518 views
- Electromagnetic Induction by Greenwich Council 1367 views

2,153 views

Published on

Basic information about Simple Harmonic Motion

No Downloads

Total views

2,153

On SlideShare

0

From Embeds

0

Number of Embeds

35

Shares

0

Downloads

76

Comments

0

Likes

3

No embeds

No notes for slide

- 1. Topic 4 – Oscillations and Waves4.1 Simple Harmonic Motion
- 2. Oscillations● There are many systems, both natural and manmade, that vibrate back and forth around anequilibrium point.● These systems are said to regularly oscillate.● Common examples are:● A mass on a spring● A pendulum● Electrons under alternating current
- 3. Key Terms● The equilibrium point is that point where thesystem will naturally rest.● e.g. for a pendulum – bottom centre● For a mass on a spring – the point where theupwards pull of the spring equals the downward pullof the weight.● The displacement (x) of the system is thevector displacement of the system from itsequilibrium point.● Usually the displacement is considered in 1dimension and is given the symbol x even if thedisplacement is vertical.
- 4. Key Terms● The amplitude (A) of an oscillation is themaximum displacement of the system.● It is the height of a wave from its equilibrium point.● It is half the peak to trough height.● The wavelength (λ) of a moving wave is thedistance from peak to peak in the spacedimension.
- 5. Key Terms● The time period (T) is the time taken in seconds tocomplete 1 complete cycle.● This is the time from peak to peak in the timedimension.● A cycle is complete when the system is back in itsinitial state.● e.g. for a pendulum, when the bob is at its lowest pointand travelling in the same direction as at the start.● The frequency (f) of the system is the number ofoscillations per second.● It is the inverse of the time period.● Frequency is measured in Hz or s-1
- 6. Key Terms● A sine wave has a period of 2π radians and atime period of T seconds.● Therefore its angular displacement (on an x-θgraph) at any time is:● The angular frequency (ω) in rad s-1istherefore:θ=2πTtω=2πT=2π f
- 7. Questions● Calculate the frequency and angular frequencyof:● A pendulum of period 4s● A water wave of period 12s● Mains electricity of period 0.02s● Laser light with period 1.5 fs
- 8. Key Terms● A sinusoidal wavehas is an oscillationwith the followingproperties.● It has an amplitude of1.● It has a period of 2πradians● It has an initialdisplacement of +0.x0 π/2 π 3π/2 2πθx=sinθ
- 9. Key Terms● A cosine wave isidentical to a sinewave excepting that ithas an initialdisplacement of +1● It can be said that acosine wave is a sinewave with a phasedifference (Ф) of-π/2x0 π/2 π 3π/2 2πθx=cosθx=sin(θ−π2)
- 10. Oscillating Systems● An oscillating system is defined as one thatobeys the general equation:● Here● the amplitude is x0● The angular frequency ensures that the real timeperiod coincides with the angular period of 2πradians● The phase allows for an oscillation that starts at anypoint.x=x0 sin(ωt+ ϕ)
- 11. Oscillating Systems● If the oscillations begin at the equilibrium pointwhere displacement is zero at the start then:● If the oscillations begin at the end point wheredisplacement is a maximum at the start then:● This second form is more useful in moresituationsx=x0 sin(ωt)x=x0 cos(ωt)
- 12. Questions● A simple harmonic motion is initiated byreleasing a mass from its maximumdisplacement. It has period 2.00s andamplitude 16.0cm. Calculate the displacementat the following times:● t=0s● t=0.25s● t=0.50s● t=1.00s
- 13. Time x v0 0 +v0T/4x0 0T/2 0 -v03T/4-x0 0T 0 +v0Oscillating Systems● The rate of change of displacement (the speed) isgiven by the gradient of the displacement curve.● Assuming that:● Then:● The speed is therefore:x=x0 sin(ωt)v=v0 cos(ωt)
- 14. Questions● A bored student holds one end of a flexible rulerand flicks it into an oscillation. The end of theruler moves a total distance of 8.0cm andmakes 28 full oscillations in 10s.● What are the amplitude and frequency of the motionof the end of the ruler?● Use the displacement equation to produce a tableof x and t for t=0,0.04,0.08,0.012,...,0.036● Draw a graph of x versus t● Find the maximum speed of the end of the ruler.
- 15. Oscillating Systems● The rate of change of speed (the acceleration)is given by the gradient of the speed curve.● Using similar logic:● This has a very similar form to the displacementequation therefore:● Note that the acceleration is:● In the opposite direction to the displacement,● Directly proportional to the displacement.a=−a0 sin(ωt)a=−a0x0x
- 16. The SHM Equation● Any system undergoing simple harmonicmotion obeys the relationship:● It can be shown using calculus or centripetalmotion that● Therefore:a∝−xa0=ω2x0a=−ω2x
- 17. The SHM Equations● For a system startingat equilibrium● The general SHM equation applies to all simpleoscillating systems.a=−ω2xx=x0 sin(ωt)v=ω x0 cos(ωt)a=−ω2x0 sin(ωt)● For a system starting atmaximum displacementx=x0 cos(ωt)v=−ω x0 sin(ωt)a=−ω2x0 cos(ωt)
- 18. The SHM Equations● One final equation can be formed by squaringthe speed equation.● Because sin2θ + cos2θ =1v=ω x0cos(ωt)v2=ω2x02cos2(ωt)v2=ω2x02(1−sin2(ωt))v2=ω2( x02−x02sin2(ωt))v2=ω2( x02−x2)v=±ω√x02−x2
- 19. Questions● A body oscillates with shm decribed by:● x=1.6cos3πt● What are the amplitude and period of themotion● At t=1.5s, calculate the displacement, velocityand acceleration.
- 20. Questions● The needle of a sewing machine moves up anddown with shm. If the total vertical motion ofthe needle is 12mm and it makes 30 stitches in7.0s calculate:● The period,● The amplitude,● The maximum speed of the needle tip● The maximum acceleration of the needle tip.
- 21. Energy Changes● An oscillating system is constantly experiencingenergy changes.● At the extremes of displacement, the potentialenergy is a maximum.● Gravitational potential for a pendulum, elasticpotential for a spring● At the equilibrium position, the kinetic energy isa maximum
- 22. Kinetic Energy● Remember that kinetic energy is given by:● Substituting● Givesv=±ω √ x02−x2v2=ω2( x02−x2)EK =12m ω2( x02−x2)EK =12m v2
- 23. Total Energy● Remember that at the equilibrium point ALL theenergy of the system is kinetic.● The total energy of the system ETis therefore:● Note that the total energy of the system isproportional to the amplitude squared.ET =12m ω2(x02−02)ET =12m ω2x02
- 24. Potential Energy● The law of conservation of energy requires thatthe total energy of an oscillating system be thesum of the potential and kinetic energies.●● Therefore12mω2x02=12mω2(x02−x2)+ EPEP=12m ω2x2ET =EK + EP
- 25. Questions● A pendulum of mass 250g is released from itsmaximum displacement and swings with shm.If the period is 4s and the amplitude of theswing is 30cm, calculate:● The frequency of the pendulum● The maximum speed of the pendulum● The total energy of the pendulum● The maximum height of the pendulum bob.● The energies of the pendulum at t=0.2s.

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment