SlideShare a Scribd company logo
1 of 8
Download to read offline
The International Journal Of Engineering And Science (IJES)
|| Volume || 5 || Issue || 9 || Pages || PP 61-68|| 2016 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805
www.theijes.com The IJES Page 61
Emerging Memory Technologies
O.D. Alao1
, J.V. Joshua2
, D.O. Kehinde3
, E.O. Ehinlafa4
, M.O. Agbaje5
,
J.E.T Akinsola6
1, 2, 5 ,6
Department of Computer Science, Babcock University, Ilishan-Remo, Nigeria
3
Department of Basic Science, Babcock University, Ilishan-Remo, Nigeria
4
Department of Physics, University of Ilorin, Ilorin, Nigeria.
--------------------------------------------------------ABSTRACT-----------------------------------------------------------
The processor caches, main memory and storage system is an integral part of any computer system. As
information begins to accumulate, higher density and long term storage solutions are necessary. Due to this,
computer architects face some level of challenges in developing reliable, energy-efficient and high performance
memories. Also, existing storage devises are degrading in performance, cost, and sizes. Power consumption
from the factory has increased, as newer codes are written, and server hardware capabilities are not adequate
to handle big data of the future. New emerging memories (NEMs) are presently with its properties likely to open
doors to innovative memory designs to solve the problems. This paper looks at the features of the emerging
memory technologies, and compares incumbent memories types with the expected future memories.
Keywords: Memory Storage, New Emerging Memory Technologies, Spin-Transfer Torque Magnetic Random-
Access Memory (STT-MRAM), Resistive Random Access Memory (ReRAM) and Phase Change Memories PCM.
-------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 17 May 2016 Date of Accepted: 20 September 2016
--------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
The pecking order of memory and storage device is a critical component of various computer systems. Processor
caches act as a subset of data and instructions stored in the memory. Data stored in the main memory are stored
in large, slow storage devices, such as disks and flash. Data from modern applications such books, maps, photos,
audios, videos, references, facts, and conversations rely on both real and offline processing and their dataset can
be in gigabytes, terabytes, zettabytes or even larger in size.
Regrettably, the scaling of conventional memory technologies is at risk. Memory technologies, such as SRAM
(Static Random Access Memory) and DRAM (Dynamic Random Access Memory), are experiencing scalability
challenges as a result to the limitations of their device cell size and power dissipation.
NEMs offer several benefits such as low power (especially low leakage), high density, and the ability to retain
the stored data over long time periods (non-volatility) that have made them attractive for use as secondary
storage. Flash memory is already widely used in consumer electronics and in solid-state disks due to its low cost
and extremely high density [2]
The dynamic and increasing power of DRAM over the power leakage of SRAM is a threat to circuit and
architecture designers of future memory hierarchy designs. Energy consumption has become key design limiters
as the memory hierarchy continues to contribute a significant fraction of overall system energy and power. The
lack of memory technology scaling can make it difficult for the memory hierarchy to achieve high capacity and
efficiency at low cost. As a result, it remains a very attractive technology for data archiving, with a sustainable
roadmap for the next ten to twenty years, well beyond the anticipated scaling limits of current conventional
technology [1].
There is a fundamental trend towards designing entire systems such that they are optimized for particular work-
loads, departing from the traditional general-purpose architecture. The typical system, with standard CPUs
consisting of a small number of identical cores with a common set of accelerators and relying on a memory and
storage hierarchy has reached its limits in terms of delivering competitive performance improvements for an
increasingly diverse set of workloads: future systems will be built out of increasingly heterogeneous components.
This article examines today‟s memory storage requirements, reviews recent research efforts on computer
architecture design with New Emerging Memories design.
Emerging Memory Technologies
www.theijes.com The IJES Page 62
II. NEW EMERGING MEMORY(NEM) TECHNOLOGIES
NEM technology is brand of computer hardware memory systems being developed with a view to either
extending the existing memory technology‟s capabilities or eventually replacing the whole technology all
together. Scalability beyond the incumbent is a critical requirement.
Most NEM technologies have resistive storage elements. Resistive RAM (RRAM or ReRAM) is a type of non-
volatile RAM that is highly promising in the next generation of memories for computers of the future. It works
by changing the resistance across a dielectric solid-state material often referred to as a Memristor.
2.1. STT-RAM
Spin-Transfer Torque Magnetic Random-Access Memory (STT-MRAM) is the latest design of the magnetic
RAM (MRAM). The information carrier of STT-MRAM is a Magnetic Tunnel Junction (MTJ) instead of
electric charges which makes the difference between it and the conventional RAM. See Fig 1
Fig. 1 A conceptual view of MTJ structure. (a) Anti-parallel (high resistance), which indicates “1” state; (b)
Parallel (low resistance), which indicates “0” state.
Each MTJ contains two ferromagnetic layers and one tunnel barrier layer. Figure 1 shows a conceptual
illustration of an MTJ. One of the ferromagnetic layer (reference layer) has fixed magnetic direction while the
other one (free layer) can change its magnetic direction by an external electromagnetic field or a spin-transfer
torque [5].
In case, the two ferromagnetic layers have different directions, the MTJ resistance is high, indicating a “1” state
(the anti-parallel case in Fig. 1 (a)); if the two layers have the same direction, the MTJ resistance is low,
indicating a “0” state (the parallel case in Fig. 1 (a)).
STT-MRAM changes the magnetic direction of the free layer by directly passing a spin-polarized current
through the MTJ structure. Comparing to the previous generation of MRAMs that uses external magnetic fields
to reverse the MTJ status, STT-MRAMs has the advantage of scalability, which means the threshold current to
make the status reversal will decrease as the size of the MTJ becomes smaller.
In the STT-MRAM memory cell design, the most popular structure is composed of one non metal oxide semi-
conductor (NMOS) transistor as the access controller and one MTJ as the storage element.
In Fig. 2, the storage element, MTJ, is connected in series with the NMOS transistor. The NMOS transistor is
controlled by the word-line (WL) signal. The detailed read and write operations for each MRAM cell is
described as follows:
Fig. 2 An illustration of an STT-MRAM cell with read/write circuitry.
Emerging Memory Technologies
www.theijes.com The IJES Page 63
There are two operations that happens which are:
i. Read Operations: This operation happens when the NMOS is turned on and a voltage is applied between
the bit-line (BL) and the source-line (SL). It will be observed that the voltage is negative and usually small
which will cause a current passing through the MTJ, but it is not small enough to invoke a disturbed write
operation. A sense amplifier compares this current with a reference current and then decides whether a “0”
or a “1” is stored in the selected MRAM cell.
ii. Write Operation: This operation happens when a positive voltage difference is established between SL and
BL for writing for a “0” or a negative voltage difference is established for writing a “1”. The current
amplitude required to ensure a successful status reversal is called threshold current. The current is related to
the material of the tunnel barrier layer, the writing pulse duration, and the MTJ geometry [5].
2.2. Phase Change Memory(PCM)
PCM is a type of non-volatile memory that exploits the property of chalcogenide glass to switch between two
states, amorphous and crystalline, with the application of heat using electrical pulses. The phase change material
can be switched from one phase to another reliably, quickly, and a large number of times. The amorphous phase
has low optical reflexivity and high electrical resistivity. Whereas, the crystalline phase (or phases) has high
reflexivity and low resistance [3].
For storage of information, PCM uses chalcogenide-based material. It has a wide range of resistivity, about three
orders of magnitude, and this forms the basis of data storage. The amorphous, high resistance state is used to
represent a bit “0,” and the crystalline, low resistance state represents a bit “1.” When germanium-antimony-
tellurium (GeSbTe or GST) is heated to a high temperature (normally over 600 ◦C), it gets melted and its
chalcogenide crystallinity is lost.
Once cooled, it is frozen into an amorphous and its electrical resistance becomes high. This process is called
RESET. A way to achieve the crystalline state is by applying a lower constant-amplitude current pulse for a time
longer than the so-called SET pulse. This is called SET process. The time of phase transition is temperature-
dependent [5].
Fig 3: illustration of a PCM cell
There are two operations that happens which are;
i. Read Operation: To effectively read data stored in the PCM cells across the GST, a small voltage is
applied. The read voltage to invoke detectable current must be strong but low enough to avoid write
disturbance. In Fig. 3, every basic cell contains one GST and one NMOS access transistor. This structure
has a name of “1T1R” where “T” stands for the NMOS transistor and “R” stands for GST. The GST in each
PCM cell is linked to the drain-region of the NMOS in series so that the data stored in the cells can be
accessed [4].
ii. Write Operation: There are two kinds of write operations,
a. The SET operation that switches the GST into crystalline phase when heated
b. The RESET operation that switches the GST into amorphous phase.
Note: Both operations are controlled by electrical current: high-power pulses for the RESET operation heat the
memory cell above the GST melting temperature; moderate power but longer duration pulses for the SET
operation heat the cell above the GST crystallization temperature but below the melting temperature. The
temperature is controlled by passing through a certain amount of electrical current and generating the required
heat.
Emerging Memory Technologies
www.theijes.com The IJES Page 64
2.3 Resistive Random Access Memory(ReRAM)
Any memory technology that represent digital information using its variable resistance is what ReRAM is meant
for. An insulating dielectric is conducted via conduction path by applying an adequate high voltage. The
conduction path can be generated by different mechanisms, including defects, metal migration, etc. The filament
may be reset (broken, resulting in high resistance) or set (reformed, resulting in lower resistance) by applying an
appropriate voltage [5].
ReRAM structure is a one cell i.e. a one metal oxide layer sandwiched by two metal electrodes - the top
electrode (TE) and the bottom electrode (BE), shown in figure 4. A low resistance state (LRS) represents digital
“1” while a high resistance state (HRS) represents digital “0.”
Fig.4: ReRAM structure
III. OTHER EMERGING MEMORY TECHNOLOGIES
3.1. Programmable Metallization Cell (PMC)
According to [7], PMC also known as the Electrochemical Metallization Memory Cells (ECM) rely on
electrochemical growth and dissolution of a conducting filament within the insulating layer. They consist of an
active Cu or Ag electrode, a cation conducting insulating layer, and an inert counter electrode. PMC cells exhibit
multibit data storage capability, scalability almost down to the atomic level, and very low programming power.
Moreover, potential backend of line compatible integration has been demonstrated making ECM cells of high
interest for future nonvolatile memory.
3.2. Polymer memory
Throughout the last few years, polymers have found growing interest as a result of the rise of a new class of
nonvolatile memories. In a polymer memory, a layer consists of molecules and/or nanoparticles in an organic
polymer matrix is sandwiched between an array of top and bottom electrodes as illustrated in Figure 5.
Moreover, polymer memory has the advantage of a simple fabrication process and good controllability of
materials [9]. Polymer memory could be called digital memory with the latest technology. It is not possible for a
silicon-based memory to be established in less space, but it is possible for polymer memory. The non
volatileness and other features are inbuilt at the molecular level and offers very high advantages in terms of cost.
But turning polymer memory into a commercial product would not be easy.
Fig 5: Structure of a polymer memory device.
Emerging Memory Technologies
www.theijes.com The IJES Page 65
3.3. Molecular Memory
A molecular memory is a nonvolatile data storage memory technology that uses molecular species as the data
storage element, rather than, e.g., circuits, magnetics, inorganic materials, or physical shapes. In a molecular
memory, a monolayer of molecules is sandwiched between a cross-point array of top and bottom electrodes as
shown in Fig 6. The molecules are packed in a highly ordered way, with one end of the molecule electrically
connected to the bottom electrode and the other end of the molecule connected to the top electrode, and this
molecular component is described as a molecular switch. Then, regarding the molecular memory operation, by
applying a voltage between the electrodes, the conductivity of the molecules is altered, enabling data to be stored
in a nonvolatile way. This process can then be reversed, and the data can be erased by applying a voltage to the
opposite polarity of the memory cell.
Fig 6: Cell structure of a molecular memory device
3.4. MNW
The molecular nanowire array (MNW) memory is fundamentally different from other semiconductor memories;
information storage is achieved through the channel of a nanowire transistor that is functionalized with redox-
active molecules rather than through manipulation of small amounts of charge. It is relatively slow and lacks the
random access capability, wherein data that can be randomly read and written at every byte are being actively
pursued. Figure 7 shows the schematic design of a MNW memory cell.
Fig 7: A MNW memory cell structure
3.5. QD (QUANTUM DOTS) Memory
Memory made from tiny islands of semiconductors - known as quantum dots - could fill a gap left by today's
computer memory, allowing storage that is fast as well as long lasting. Researchers have shown that they can
write information into quantum dot memory in just nanoseconds. New research shows that memory based on
quantum dots as shown in figure 8 can provide the best of both: long-term storage with write speeds nearly as
fast as DRAM. A tightly packed array of tiny islands, each around 15 nm across, could store 1 terabyte
(1,000 GB) of data per square inch, the researchers say. Dieter Bimberg and colleagues at the Technical
University of Berlin, Germany, with collaborators at Istanbul University, Turkey, demonstrated that it is possible
to write information to the quantum dots in just 6 ns. The key advantages of quantum dot (QD) are the high
read/write speed, small size, low operating voltage, and, most importantly, multibit storage per device.
Fig 8 Structure of quantum dot memory [8].
Emerging Memory Technologies
www.theijes.com The IJES Page 66
3.6. 1T1R-RRAM
One-transistor one-resistor (1T1R)-RRAM is also one class of emerging memory technology with impressive
characteristics. It meets the demands for next-generation memory systems. It is expected that 1T1R-RRAM
could be able to meet the demand of high-speed (e.g., performance) memory technology. The 1T1R structure is
chosen because the transistor isolates current to cells, which are selected from cells which do not. The basic cell
structure of 1T1R is depicted in Figure 9. 1T1R-RRAM consists of an access transistor and a resistor as a
storage element. [6] posited that the 1T1R cell structure is similar to that of a DRAM cell in that the data is
stored as the resistance of the resistor and the transistor serves as an access switch for reading and writing data.
Moreover, the 1T1R structure is more compact and may enable vertically stacking memory layers, ideally suited
for mass storage devices. But, in the absence of any transistor, the isolation must be provided by a „selector‟
device, such as a diode, in series with the memory element, or by the memory element itself.
Fig 9: The basic cell structure of 1T1R-RRAM.
IV. COMPARISON BETWEEN THE DIFFERENT NEMS
A comparison between some of the different NEMs as against the main current memory hierarchy components
(SRAM, DRAM, disk and flash) is drawn
The following set of criteria is employed;
1. Maturity: Whether the technology is currently used in the market or it is in early or later search stages
before being commercially mature
2. Cell size: the cell size, using standard feature size
3. Read Latency: the speed for reading values from memory cell
4. Write Latency: the speed for writing values to a memory cell
5. Endurance: the number of write cycles that a memory cell endures before eventually wearing out
6. Energy: energy spent per bit access. Related to dynamic power
7. Static power: whether power needs to be spent while accessing the memory device. This includes
refreshing solid memory contents due to energy leakage or keeping disks spinning to achieve lower access
latencies.
8. Non-volatility: whether the memory technology is volatile or not.
Table 1 compares NEMs with traditional memory and storage technologies, in terms of performance, energy,
density, and endurance [5].
FEATURE SRAM DRAM DISK FLASH STT-MRAM PCM ReRAM
Maturity Product Product Product Product Advanced
Development
Advanced
Development
Advanced
Development
Read
latency
<10ns 10-60ns 8.5ms 25 µs <10ns 48ns <10ns
Write
latency
<10ns 10-60ns 9.5ms 200µs 12.5ns 40-150ns 10ns
Energy Per
Bit Access
>1pJ 2pJ 100-
1.000mJ
10nJ 2pJ 100pJ 0.02pJ
Leakage
Power
High Medium High Low Low Low Low
Endurance >1015
>1015
>1015
104 >1015
105
– 109
105
– 1011
Non
volatility
No No Yes Yes Yes Yes Yes
Scalability Yes Yes Yes Yes Yes Yes Yes
Emerging Memory Technologies
www.theijes.com The IJES Page 67
V. REPLACING TECHNOLOGIES WITH NEMS
Since NEMs are persistent and have similar mechanics (no moving parts) and lower energy consumption, it‟s
natural to refer to them as persistent storage. NEMs would also perform as a disk replacement.
5.1. PCM as a Disk Replacement
According to [3], when considering PCM as a disk replacement, the following would be considered;
1. Advantage of solid-state implementation (non-moving parts), very low latencies, low cost per bit and
physical durability.
2. Poor write endurance (can be attacked through wear- leveling) and scaling down to a point where that can
compete with disks (using multi-layers, multi-bit cells, etc.)
3. The prices of NEMs such as PCM will be much higher than disks, but over time it tends to decrease
dramatically s market adoption progresses.
4. Its I/O are accessed as a block device.
5. Runtime error detection or correction mechanisms
6. Read or write should be asymmetrical, the read being as a single word.
Table 2 below is a characteristic of NEM replacement PCM
Characteristics of PCM
Capacity 1 TB
Read or write access time 100 ns
Data rate > 1 GB/s
Sustained I/O rate 238 000 sio/s (SIO: start I/O)
Sustained bandwidth 975 mb/s
Write endurance 1012
write
5.2. PCM or STT-MRAM as Disk Replacement
To evaluate as a persistent storage, five evaluation criteria that should be taken into consideration;
1. Density: It is related with cost/GB which is the most important parameter. The cost/GB scales in proportion
to the density,
which is cell size divided by the number of bits per cell.
2. Power efficiency – important for mobile/embedded devices as well as for datacenters.
3. Access time: time interval between write/read request and the writing or availability of the data: Specially
important for datacenters
4. Endurance: the number of times a bit can be rewritten
5. Retention: the length of time a bit remains stable.
Table 3: Comparison of NEM Technologies for Disk Replacement
From Table 3 above, the technologies with the best opportunity have a small cell size and the capability of
storing multiple bits per cell.
Phase Change Memory (PCM) and Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM)
appear to meet these criteria. It is concluded that the PCM and STT-MRAM are the technologies with higher
probabilities of being a feasible replacement for disk in the future since they meet the criteria (small cell size and
capability of storing multiple bits per cells).
VI. CONCLUSION
Since the limitations of the traditional technologies threatens the sustainable growth of performance and energy
efficiency of computer systems, memory technology should be non-volatile, low-cost, high dense energy
efficient, fast and within high endurance.
Device Type DRAM Flash PCM STT-MRAM
Maturity Product Product Product Product
Density 83gb/chip 64gb/chip 512mb/chip 2mb/chip
Cell size 6F2
4F2
5F2
4F2
MLC Capacity No 4 bits/cell 4bits/cell 4biits/cell
Energy 2pJ 10pJ 100pJ 0.02pJ
Access time 10/10ms 200/25ns 100/20ns 10/10ns
Retention 1016/64ms 105/10yr 105/10yr 1016/10yr
Emerging Memory Technologies
www.theijes.com The IJES Page 68
Therefore, superior density, power, and non-volatility characteristics of emerging NEM technologies provide
opportunities to break this traditional system organization.
The problems in performance and strength as compared with traditional memory technologies is as a result of re-
architecting processor caches, main memory, and other storage system. By taking the full advantages of the
NEM technologies, computer performance can be highly enhanced.
REFERENCES
[1]. Chris H. Kim (2011): Modeling, Architecture, and Applications for Emerging Memory Technologies. Pp 44-45
[2]. Clinton W. Smullen, V , Vidyabhushan M, Anurag N, Sudhanva G, Mircea R. Stan.C (2011): Relaxing Non-Volatility for Fast and
Energy-Efficient STT-RAM Caches. HPCA‟11 Proceedings of the 2011 IEEE 17th International Symposium on High Performance
Computer Architecture Pp 50-61
[3]. Qureshi, M, Srinivasan,V and Rivers,J (2009): „„Scalable High Performance Main Memory System Using Phase-Change Memory
Technology,‟‟ Proc. 36th Int‟l Symp. Computer Architecture (ISCA 09), ACM Press, pp. 24-33.
[4]. Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, Yuan Xie (2009): Hybrid Cache Architecture with Disparate
Memory Technologies:ISCA proceedings of the 36th annual international symposium on computer architecture pages 34-45 ACM
New York, NY, USA
[5]. Zhao, J; S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi Kiln (2015): Closing the performance gap between systems with and without
persistence support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO‟13).
ACM, New York, NY, 421– 432. DOI
[6]. Zangeneh M, Joshi A. Design and optimization of nonvolatile multibit 1T1R resistive RAM. IEEE Trans VLSI System.
2014;22(8):1815–1822.
[7]. Chen, A., Hutchby, J., Zhirnov, V., and Bourianoff, G. (2015). Emerging nanoelectronic devises, First Edition. John Wiley &
Sons, Ltd.
[8]. Manna S, Aluguri R, Katiyar A, Das S, Laha A, Osten H, Ray S. MBE-grown Si and Si1-xGex quantum dots embedded within
epitaxial Gd2O3 on substrate for floating gate memory device. Nanotechnology. 2013;24:505709
[9]. Prakash A, Ouyang J, Lin JL, Yang Y.(2006) Polymer memory device based on conjugated polymer and gold nanoparticles.
Journal of Applied Physics. 2006;100(5):054309–054314.

More Related Content

What's hot

Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - IntroductionJungwon Kim
 
Managing PTZ cameras using Elixir and the Phoenix Framework
Managing PTZ cameras using Elixir and the Phoenix FrameworkManaging PTZ cameras using Elixir and the Phoenix Framework
Managing PTZ cameras using Elixir and the Phoenix FrameworkJose Garcia-Sacristan
 
Paging and Segmentation in Operating System
Paging and Segmentation in Operating SystemPaging and Segmentation in Operating System
Paging and Segmentation in Operating SystemRaj Mohan
 
Research Scope in Parallel Computing And Parallel Programming
Research Scope in Parallel Computing And Parallel ProgrammingResearch Scope in Parallel Computing And Parallel Programming
Research Scope in Parallel Computing And Parallel ProgrammingShitalkumar Sukhdeve
 
Linux Locking Mechanisms
Linux Locking MechanismsLinux Locking Mechanisms
Linux Locking MechanismsKernel TLV
 
Spiking neural network: an introduction I
Spiking neural network: an introduction ISpiking neural network: an introduction I
Spiking neural network: an introduction IDalin Zhang
 
Score based generative model
Score based generative modelScore based generative model
Score based generative modelsangyun lee
 
Heterogeneous computing
Heterogeneous computingHeterogeneous computing
Heterogeneous computingRashid Ansari
 
Understanding of linux kernel memory model
Understanding of linux kernel memory modelUnderstanding of linux kernel memory model
Understanding of linux kernel memory modelSeongJae Park
 
Introduction to High Performance Computing
Introduction to High Performance ComputingIntroduction to High Performance Computing
Introduction to High Performance ComputingUmarudin Zaenuri
 
Shared-Memory Multiprocessors
Shared-Memory MultiprocessorsShared-Memory Multiprocessors
Shared-Memory MultiprocessorsSalvatore La Bua
 
5 process synchronization
5 process synchronization5 process synchronization
5 process synchronizationBaliThorat1
 
Operating Systems - "Chapter 4: Multithreaded Programming"
Operating Systems - "Chapter 4:  Multithreaded Programming"Operating Systems - "Chapter 4:  Multithreaded Programming"
Operating Systems - "Chapter 4: Multithreaded Programming"Ra'Fat Al-Msie'deen
 
Lecture 2 more about parallel computing
Lecture 2   more about parallel computingLecture 2   more about parallel computing
Lecture 2 more about parallel computingVajira Thambawita
 

What's hot (20)

Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - Introduction
 
Managing PTZ cameras using Elixir and the Phoenix Framework
Managing PTZ cameras using Elixir and the Phoenix FrameworkManaging PTZ cameras using Elixir and the Phoenix Framework
Managing PTZ cameras using Elixir and the Phoenix Framework
 
Paging and Segmentation in Operating System
Paging and Segmentation in Operating SystemPaging and Segmentation in Operating System
Paging and Segmentation in Operating System
 
Research Scope in Parallel Computing And Parallel Programming
Research Scope in Parallel Computing And Parallel ProgrammingResearch Scope in Parallel Computing And Parallel Programming
Research Scope in Parallel Computing And Parallel Programming
 
Linux Locking Mechanisms
Linux Locking MechanismsLinux Locking Mechanisms
Linux Locking Mechanisms
 
Parallel computing persentation
Parallel computing persentationParallel computing persentation
Parallel computing persentation
 
Chap2 slides
Chap2 slidesChap2 slides
Chap2 slides
 
Spiking neural network: an introduction I
Spiking neural network: an introduction ISpiking neural network: an introduction I
Spiking neural network: an introduction I
 
Score based generative model
Score based generative modelScore based generative model
Score based generative model
 
Heterogeneous computing
Heterogeneous computingHeterogeneous computing
Heterogeneous computing
 
Understanding of linux kernel memory model
Understanding of linux kernel memory modelUnderstanding of linux kernel memory model
Understanding of linux kernel memory model
 
Introduction to High Performance Computing
Introduction to High Performance ComputingIntroduction to High Performance Computing
Introduction to High Performance Computing
 
Shared-Memory Multiprocessors
Shared-Memory MultiprocessorsShared-Memory Multiprocessors
Shared-Memory Multiprocessors
 
Parallel processing
Parallel processingParallel processing
Parallel processing
 
5 process synchronization
5 process synchronization5 process synchronization
5 process synchronization
 
Operating Systems - "Chapter 4: Multithreaded Programming"
Operating Systems - "Chapter 4:  Multithreaded Programming"Operating Systems - "Chapter 4:  Multithreaded Programming"
Operating Systems - "Chapter 4: Multithreaded Programming"
 
Lecture 2 more about parallel computing
Lecture 2   more about parallel computingLecture 2   more about parallel computing
Lecture 2 more about parallel computing
 
Os Threads
Os ThreadsOs Threads
Os Threads
 
Distributed Operating System_1
Distributed Operating System_1Distributed Operating System_1
Distributed Operating System_1
 
Semaphores
SemaphoresSemaphores
Semaphores
 

Viewers also liked

Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...
Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...
Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...theijes
 
Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...
Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...
Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...theijes
 
Stochastic Order Level Inventory Model with Inventory Returns and Special Sales
Stochastic Order Level Inventory Model with Inventory Returns and Special SalesStochastic Order Level Inventory Model with Inventory Returns and Special Sales
Stochastic Order Level Inventory Model with Inventory Returns and Special Salestheijes
 
Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...
Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...
Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...theijes
 
Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...
Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...
Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...theijes
 
Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...
Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...
Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...theijes
 
Policy Learning of Mineral Mining Management
Policy Learning of Mineral Mining ManagementPolicy Learning of Mineral Mining Management
Policy Learning of Mineral Mining Managementtheijes
 
A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...
A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...
A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...theijes
 
Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...
Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...
Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...theijes
 
Characterization of Aluminum Doped Nanostructured ZnO/p-Si Heterojunctions
Characterization of Aluminum Doped Nanostructured ZnO/p-Si HeterojunctionsCharacterization of Aluminum Doped Nanostructured ZnO/p-Si Heterojunctions
Characterization of Aluminum Doped Nanostructured ZnO/p-Si Heterojunctionstheijes
 
The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)
The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)
The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)theijes
 
Concept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor BladeConcept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor Bladetheijes
 
Role conflict and stress effect on the performance of employees working in pu...
Role conflict and stress effect on the performance of employees working in pu...Role conflict and stress effect on the performance of employees working in pu...
Role conflict and stress effect on the performance of employees working in pu...theijes
 
Generation of Electricity by mounting Wind mill on moving vehicles for safe F...
Generation of Electricity by mounting Wind mill on moving vehicles for safe F...Generation of Electricity by mounting Wind mill on moving vehicles for safe F...
Generation of Electricity by mounting Wind mill on moving vehicles for safe F...theijes
 
A Comparitive Analysis Of Steganography Techniques
A Comparitive Analysis Of Steganography TechniquesA Comparitive Analysis Of Steganography Techniques
A Comparitive Analysis Of Steganography Techniquestheijes
 
Classical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formsClassical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formstheijes
 
The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...
The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...
The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...theijes
 
Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...
Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...
Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...theijes
 

Viewers also liked (18)

Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...
Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...
Low Peak to Average Power Ratio and High Spectral Efficiency Using Selective ...
 
Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...
Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...
Mechanical Characterization of Shape Memory Alloy Based RF MEMS switch using ...
 
Stochastic Order Level Inventory Model with Inventory Returns and Special Sales
Stochastic Order Level Inventory Model with Inventory Returns and Special SalesStochastic Order Level Inventory Model with Inventory Returns and Special Sales
Stochastic Order Level Inventory Model with Inventory Returns and Special Sales
 
Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...
Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...
Phytochemical screening and antimicrobial studies of uapaca togoensis (pax) s...
 
Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...
Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...
Detection of the Presence of Heavy Metal Pollutants in Eleme Industrial Area ...
 
Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...
Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...
Natural Convection from Heated Rough Surface at the Bottom of Vented Rectangu...
 
Policy Learning of Mineral Mining Management
Policy Learning of Mineral Mining ManagementPolicy Learning of Mineral Mining Management
Policy Learning of Mineral Mining Management
 
A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...
A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...
A Computational Study Of Heat Transfer Due To The Inlet Oscillating Condition...
 
Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...
Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...
Multi Channel Multi Clock Frequency Speed Rate Real Time Industrial Standard ...
 
Characterization of Aluminum Doped Nanostructured ZnO/p-Si Heterojunctions
Characterization of Aluminum Doped Nanostructured ZnO/p-Si HeterojunctionsCharacterization of Aluminum Doped Nanostructured ZnO/p-Si Heterojunctions
Characterization of Aluminum Doped Nanostructured ZnO/p-Si Heterojunctions
 
The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)
The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)
The Challenges of Building Maintenance in Nigeria (A Case Study of Ekiti State)
 
Concept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor BladeConcept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor Blade
 
Role conflict and stress effect on the performance of employees working in pu...
Role conflict and stress effect on the performance of employees working in pu...Role conflict and stress effect on the performance of employees working in pu...
Role conflict and stress effect on the performance of employees working in pu...
 
Generation of Electricity by mounting Wind mill on moving vehicles for safe F...
Generation of Electricity by mounting Wind mill on moving vehicles for safe F...Generation of Electricity by mounting Wind mill on moving vehicles for safe F...
Generation of Electricity by mounting Wind mill on moving vehicles for safe F...
 
A Comparitive Analysis Of Steganography Techniques
A Comparitive Analysis Of Steganography TechniquesA Comparitive Analysis Of Steganography Techniques
A Comparitive Analysis Of Steganography Techniques
 
Classical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formsClassical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate forms
 
The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...
The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...
The Effects of Inhibition on Corrosion of Mild Steel in H2SO4 Using Ethanol E...
 
Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...
Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...
Effect of Seasonal Variation on Quality of Domestic Water Sources in Central ...
 

Similar to Emerging Memory Technologies

STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...
STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...
STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...elelijjournal
 
Energy optimization of 6T SRAM cell using low-voltage and high-performance in...
Energy optimization of 6T SRAM cell using low-voltage and high-performance in...Energy optimization of 6T SRAM cell using low-voltage and high-performance in...
Energy optimization of 6T SRAM cell using low-voltage and high-performance in...IJECEIAES
 
Design of STT-RAM cell in 45nm hybrid CMOS/MTJ process
Design of STT-RAM cell in 45nm hybrid CMOS/MTJ processDesign of STT-RAM cell in 45nm hybrid CMOS/MTJ process
Design of STT-RAM cell in 45nm hybrid CMOS/MTJ processEditor IJCATR
 
MTJ-Based Nonvolatile 9T SRAM Cell
MTJ-Based Nonvolatile 9T SRAM CellMTJ-Based Nonvolatile 9T SRAM Cell
MTJ-Based Nonvolatile 9T SRAM Cellidescitation
 
Presentation STT-RAM Survey
Presentation STT-RAM SurveyPresentation STT-RAM Survey
Presentation STT-RAM SurveySwapnil Bhosale
 
Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...
Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...
Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...idescitation
 
Nvram applications in the architectural revolutions of main memory implementa...
Nvram applications in the architectural revolutions of main memory implementa...Nvram applications in the architectural revolutions of main memory implementa...
Nvram applications in the architectural revolutions of main memory implementa...IAEME Publication
 
SPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORY
SPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORYSPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORY
SPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORYIJERA Editor
 
Data remanence in semiconductor devices
Data remanence in semiconductor devicesData remanence in semiconductor devices
Data remanence in semiconductor devicessergiococo1
 
A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell
A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell
A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell Ieee Xpert
 
IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...
IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...
IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...IRJET Journal
 
Process Variation and Radiation-Immune Single Ended 6T SRAM Cell
Process Variation and Radiation-Immune Single Ended 6T SRAM CellProcess Variation and Radiation-Immune Single Ended 6T SRAM Cell
Process Variation and Radiation-Immune Single Ended 6T SRAM CellIDES Editor
 
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIERSRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIERIRJET Journal
 

Similar to Emerging Memory Technologies (20)

STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...
STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...
STUDY OF SPIN TRANSFER TORQUE (STT) AND SPIN ORBIT TORQUE (SOT) MAGNETIC TUNN...
 
Memory base
Memory baseMemory base
Memory base
 
Energy optimization of 6T SRAM cell using low-voltage and high-performance in...
Energy optimization of 6T SRAM cell using low-voltage and high-performance in...Energy optimization of 6T SRAM cell using low-voltage and high-performance in...
Energy optimization of 6T SRAM cell using low-voltage and high-performance in...
 
Design of STT-RAM cell in 45nm hybrid CMOS/MTJ process
Design of STT-RAM cell in 45nm hybrid CMOS/MTJ processDesign of STT-RAM cell in 45nm hybrid CMOS/MTJ process
Design of STT-RAM cell in 45nm hybrid CMOS/MTJ process
 
MTJ-Based Nonvolatile 9T SRAM Cell
MTJ-Based Nonvolatile 9T SRAM CellMTJ-Based Nonvolatile 9T SRAM Cell
MTJ-Based Nonvolatile 9T SRAM Cell
 
ThePaper (1)
ThePaper (1)ThePaper (1)
ThePaper (1)
 
poster_final
poster_finalposter_final
poster_final
 
poster_final
poster_finalposter_final
poster_final
 
Presentation STT-RAM Survey
Presentation STT-RAM SurveyPresentation STT-RAM Survey
Presentation STT-RAM Survey
 
Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...
Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...
Average and Static Power Analysis of a 6T and 7T SRAM Bit-Cell at 180nm, 90nm...
 
Low power sram
Low power sramLow power sram
Low power sram
 
Nvram applications in the architectural revolutions of main memory implementa...
Nvram applications in the architectural revolutions of main memory implementa...Nvram applications in the architectural revolutions of main memory implementa...
Nvram applications in the architectural revolutions of main memory implementa...
 
SPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORY
SPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORYSPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORY
SPIN TORQUE TRANSFER MRAM AS A UNIVERSAL MEMORY
 
Data remanence in semiconductor devices
Data remanence in semiconductor devicesData remanence in semiconductor devices
Data remanence in semiconductor devices
 
A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell
A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell
A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell
 
IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...
IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...
IRJET- Reduction of Dark Silicon through Efficient Power Reduction Designing ...
 
Process Variation and Radiation-Immune Single Ended 6T SRAM Cell
Process Variation and Radiation-Immune Single Ended 6T SRAM CellProcess Variation and Radiation-Immune Single Ended 6T SRAM Cell
Process Variation and Radiation-Immune Single Ended 6T SRAM Cell
 
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIERSRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
 
Seminar stt ram
Seminar stt ramSeminar stt ram
Seminar stt ram
 
Af34193199
Af34193199Af34193199
Af34193199
 

Recently uploaded

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringJuanCarlosMorales19600
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
lifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxlifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxsomshekarkn64
 

Recently uploaded (20)

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineering
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
lifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxlifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 

Emerging Memory Technologies

  • 1. The International Journal Of Engineering And Science (IJES) || Volume || 5 || Issue || 9 || Pages || PP 61-68|| 2016 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 www.theijes.com The IJES Page 61 Emerging Memory Technologies O.D. Alao1 , J.V. Joshua2 , D.O. Kehinde3 , E.O. Ehinlafa4 , M.O. Agbaje5 , J.E.T Akinsola6 1, 2, 5 ,6 Department of Computer Science, Babcock University, Ilishan-Remo, Nigeria 3 Department of Basic Science, Babcock University, Ilishan-Remo, Nigeria 4 Department of Physics, University of Ilorin, Ilorin, Nigeria. --------------------------------------------------------ABSTRACT----------------------------------------------------------- The processor caches, main memory and storage system is an integral part of any computer system. As information begins to accumulate, higher density and long term storage solutions are necessary. Due to this, computer architects face some level of challenges in developing reliable, energy-efficient and high performance memories. Also, existing storage devises are degrading in performance, cost, and sizes. Power consumption from the factory has increased, as newer codes are written, and server hardware capabilities are not adequate to handle big data of the future. New emerging memories (NEMs) are presently with its properties likely to open doors to innovative memory designs to solve the problems. This paper looks at the features of the emerging memory technologies, and compares incumbent memories types with the expected future memories. Keywords: Memory Storage, New Emerging Memory Technologies, Spin-Transfer Torque Magnetic Random- Access Memory (STT-MRAM), Resistive Random Access Memory (ReRAM) and Phase Change Memories PCM. ------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 17 May 2016 Date of Accepted: 20 September 2016 -------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION The pecking order of memory and storage device is a critical component of various computer systems. Processor caches act as a subset of data and instructions stored in the memory. Data stored in the main memory are stored in large, slow storage devices, such as disks and flash. Data from modern applications such books, maps, photos, audios, videos, references, facts, and conversations rely on both real and offline processing and their dataset can be in gigabytes, terabytes, zettabytes or even larger in size. Regrettably, the scaling of conventional memory technologies is at risk. Memory technologies, such as SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory), are experiencing scalability challenges as a result to the limitations of their device cell size and power dissipation. NEMs offer several benefits such as low power (especially low leakage), high density, and the ability to retain the stored data over long time periods (non-volatility) that have made them attractive for use as secondary storage. Flash memory is already widely used in consumer electronics and in solid-state disks due to its low cost and extremely high density [2] The dynamic and increasing power of DRAM over the power leakage of SRAM is a threat to circuit and architecture designers of future memory hierarchy designs. Energy consumption has become key design limiters as the memory hierarchy continues to contribute a significant fraction of overall system energy and power. The lack of memory technology scaling can make it difficult for the memory hierarchy to achieve high capacity and efficiency at low cost. As a result, it remains a very attractive technology for data archiving, with a sustainable roadmap for the next ten to twenty years, well beyond the anticipated scaling limits of current conventional technology [1]. There is a fundamental trend towards designing entire systems such that they are optimized for particular work- loads, departing from the traditional general-purpose architecture. The typical system, with standard CPUs consisting of a small number of identical cores with a common set of accelerators and relying on a memory and storage hierarchy has reached its limits in terms of delivering competitive performance improvements for an increasingly diverse set of workloads: future systems will be built out of increasingly heterogeneous components. This article examines today‟s memory storage requirements, reviews recent research efforts on computer architecture design with New Emerging Memories design.
  • 2. Emerging Memory Technologies www.theijes.com The IJES Page 62 II. NEW EMERGING MEMORY(NEM) TECHNOLOGIES NEM technology is brand of computer hardware memory systems being developed with a view to either extending the existing memory technology‟s capabilities or eventually replacing the whole technology all together. Scalability beyond the incumbent is a critical requirement. Most NEM technologies have resistive storage elements. Resistive RAM (RRAM or ReRAM) is a type of non- volatile RAM that is highly promising in the next generation of memories for computers of the future. It works by changing the resistance across a dielectric solid-state material often referred to as a Memristor. 2.1. STT-RAM Spin-Transfer Torque Magnetic Random-Access Memory (STT-MRAM) is the latest design of the magnetic RAM (MRAM). The information carrier of STT-MRAM is a Magnetic Tunnel Junction (MTJ) instead of electric charges which makes the difference between it and the conventional RAM. See Fig 1 Fig. 1 A conceptual view of MTJ structure. (a) Anti-parallel (high resistance), which indicates “1” state; (b) Parallel (low resistance), which indicates “0” state. Each MTJ contains two ferromagnetic layers and one tunnel barrier layer. Figure 1 shows a conceptual illustration of an MTJ. One of the ferromagnetic layer (reference layer) has fixed magnetic direction while the other one (free layer) can change its magnetic direction by an external electromagnetic field or a spin-transfer torque [5]. In case, the two ferromagnetic layers have different directions, the MTJ resistance is high, indicating a “1” state (the anti-parallel case in Fig. 1 (a)); if the two layers have the same direction, the MTJ resistance is low, indicating a “0” state (the parallel case in Fig. 1 (a)). STT-MRAM changes the magnetic direction of the free layer by directly passing a spin-polarized current through the MTJ structure. Comparing to the previous generation of MRAMs that uses external magnetic fields to reverse the MTJ status, STT-MRAMs has the advantage of scalability, which means the threshold current to make the status reversal will decrease as the size of the MTJ becomes smaller. In the STT-MRAM memory cell design, the most popular structure is composed of one non metal oxide semi- conductor (NMOS) transistor as the access controller and one MTJ as the storage element. In Fig. 2, the storage element, MTJ, is connected in series with the NMOS transistor. The NMOS transistor is controlled by the word-line (WL) signal. The detailed read and write operations for each MRAM cell is described as follows: Fig. 2 An illustration of an STT-MRAM cell with read/write circuitry.
  • 3. Emerging Memory Technologies www.theijes.com The IJES Page 63 There are two operations that happens which are: i. Read Operations: This operation happens when the NMOS is turned on and a voltage is applied between the bit-line (BL) and the source-line (SL). It will be observed that the voltage is negative and usually small which will cause a current passing through the MTJ, but it is not small enough to invoke a disturbed write operation. A sense amplifier compares this current with a reference current and then decides whether a “0” or a “1” is stored in the selected MRAM cell. ii. Write Operation: This operation happens when a positive voltage difference is established between SL and BL for writing for a “0” or a negative voltage difference is established for writing a “1”. The current amplitude required to ensure a successful status reversal is called threshold current. The current is related to the material of the tunnel barrier layer, the writing pulse duration, and the MTJ geometry [5]. 2.2. Phase Change Memory(PCM) PCM is a type of non-volatile memory that exploits the property of chalcogenide glass to switch between two states, amorphous and crystalline, with the application of heat using electrical pulses. The phase change material can be switched from one phase to another reliably, quickly, and a large number of times. The amorphous phase has low optical reflexivity and high electrical resistivity. Whereas, the crystalline phase (or phases) has high reflexivity and low resistance [3]. For storage of information, PCM uses chalcogenide-based material. It has a wide range of resistivity, about three orders of magnitude, and this forms the basis of data storage. The amorphous, high resistance state is used to represent a bit “0,” and the crystalline, low resistance state represents a bit “1.” When germanium-antimony- tellurium (GeSbTe or GST) is heated to a high temperature (normally over 600 ◦C), it gets melted and its chalcogenide crystallinity is lost. Once cooled, it is frozen into an amorphous and its electrical resistance becomes high. This process is called RESET. A way to achieve the crystalline state is by applying a lower constant-amplitude current pulse for a time longer than the so-called SET pulse. This is called SET process. The time of phase transition is temperature- dependent [5]. Fig 3: illustration of a PCM cell There are two operations that happens which are; i. Read Operation: To effectively read data stored in the PCM cells across the GST, a small voltage is applied. The read voltage to invoke detectable current must be strong but low enough to avoid write disturbance. In Fig. 3, every basic cell contains one GST and one NMOS access transistor. This structure has a name of “1T1R” where “T” stands for the NMOS transistor and “R” stands for GST. The GST in each PCM cell is linked to the drain-region of the NMOS in series so that the data stored in the cells can be accessed [4]. ii. Write Operation: There are two kinds of write operations, a. The SET operation that switches the GST into crystalline phase when heated b. The RESET operation that switches the GST into amorphous phase. Note: Both operations are controlled by electrical current: high-power pulses for the RESET operation heat the memory cell above the GST melting temperature; moderate power but longer duration pulses for the SET operation heat the cell above the GST crystallization temperature but below the melting temperature. The temperature is controlled by passing through a certain amount of electrical current and generating the required heat.
  • 4. Emerging Memory Technologies www.theijes.com The IJES Page 64 2.3 Resistive Random Access Memory(ReRAM) Any memory technology that represent digital information using its variable resistance is what ReRAM is meant for. An insulating dielectric is conducted via conduction path by applying an adequate high voltage. The conduction path can be generated by different mechanisms, including defects, metal migration, etc. The filament may be reset (broken, resulting in high resistance) or set (reformed, resulting in lower resistance) by applying an appropriate voltage [5]. ReRAM structure is a one cell i.e. a one metal oxide layer sandwiched by two metal electrodes - the top electrode (TE) and the bottom electrode (BE), shown in figure 4. A low resistance state (LRS) represents digital “1” while a high resistance state (HRS) represents digital “0.” Fig.4: ReRAM structure III. OTHER EMERGING MEMORY TECHNOLOGIES 3.1. Programmable Metallization Cell (PMC) According to [7], PMC also known as the Electrochemical Metallization Memory Cells (ECM) rely on electrochemical growth and dissolution of a conducting filament within the insulating layer. They consist of an active Cu or Ag electrode, a cation conducting insulating layer, and an inert counter electrode. PMC cells exhibit multibit data storage capability, scalability almost down to the atomic level, and very low programming power. Moreover, potential backend of line compatible integration has been demonstrated making ECM cells of high interest for future nonvolatile memory. 3.2. Polymer memory Throughout the last few years, polymers have found growing interest as a result of the rise of a new class of nonvolatile memories. In a polymer memory, a layer consists of molecules and/or nanoparticles in an organic polymer matrix is sandwiched between an array of top and bottom electrodes as illustrated in Figure 5. Moreover, polymer memory has the advantage of a simple fabrication process and good controllability of materials [9]. Polymer memory could be called digital memory with the latest technology. It is not possible for a silicon-based memory to be established in less space, but it is possible for polymer memory. The non volatileness and other features are inbuilt at the molecular level and offers very high advantages in terms of cost. But turning polymer memory into a commercial product would not be easy. Fig 5: Structure of a polymer memory device.
  • 5. Emerging Memory Technologies www.theijes.com The IJES Page 65 3.3. Molecular Memory A molecular memory is a nonvolatile data storage memory technology that uses molecular species as the data storage element, rather than, e.g., circuits, magnetics, inorganic materials, or physical shapes. In a molecular memory, a monolayer of molecules is sandwiched between a cross-point array of top and bottom electrodes as shown in Fig 6. The molecules are packed in a highly ordered way, with one end of the molecule electrically connected to the bottom electrode and the other end of the molecule connected to the top electrode, and this molecular component is described as a molecular switch. Then, regarding the molecular memory operation, by applying a voltage between the electrodes, the conductivity of the molecules is altered, enabling data to be stored in a nonvolatile way. This process can then be reversed, and the data can be erased by applying a voltage to the opposite polarity of the memory cell. Fig 6: Cell structure of a molecular memory device 3.4. MNW The molecular nanowire array (MNW) memory is fundamentally different from other semiconductor memories; information storage is achieved through the channel of a nanowire transistor that is functionalized with redox- active molecules rather than through manipulation of small amounts of charge. It is relatively slow and lacks the random access capability, wherein data that can be randomly read and written at every byte are being actively pursued. Figure 7 shows the schematic design of a MNW memory cell. Fig 7: A MNW memory cell structure 3.5. QD (QUANTUM DOTS) Memory Memory made from tiny islands of semiconductors - known as quantum dots - could fill a gap left by today's computer memory, allowing storage that is fast as well as long lasting. Researchers have shown that they can write information into quantum dot memory in just nanoseconds. New research shows that memory based on quantum dots as shown in figure 8 can provide the best of both: long-term storage with write speeds nearly as fast as DRAM. A tightly packed array of tiny islands, each around 15 nm across, could store 1 terabyte (1,000 GB) of data per square inch, the researchers say. Dieter Bimberg and colleagues at the Technical University of Berlin, Germany, with collaborators at Istanbul University, Turkey, demonstrated that it is possible to write information to the quantum dots in just 6 ns. The key advantages of quantum dot (QD) are the high read/write speed, small size, low operating voltage, and, most importantly, multibit storage per device. Fig 8 Structure of quantum dot memory [8].
  • 6. Emerging Memory Technologies www.theijes.com The IJES Page 66 3.6. 1T1R-RRAM One-transistor one-resistor (1T1R)-RRAM is also one class of emerging memory technology with impressive characteristics. It meets the demands for next-generation memory systems. It is expected that 1T1R-RRAM could be able to meet the demand of high-speed (e.g., performance) memory technology. The 1T1R structure is chosen because the transistor isolates current to cells, which are selected from cells which do not. The basic cell structure of 1T1R is depicted in Figure 9. 1T1R-RRAM consists of an access transistor and a resistor as a storage element. [6] posited that the 1T1R cell structure is similar to that of a DRAM cell in that the data is stored as the resistance of the resistor and the transistor serves as an access switch for reading and writing data. Moreover, the 1T1R structure is more compact and may enable vertically stacking memory layers, ideally suited for mass storage devices. But, in the absence of any transistor, the isolation must be provided by a „selector‟ device, such as a diode, in series with the memory element, or by the memory element itself. Fig 9: The basic cell structure of 1T1R-RRAM. IV. COMPARISON BETWEEN THE DIFFERENT NEMS A comparison between some of the different NEMs as against the main current memory hierarchy components (SRAM, DRAM, disk and flash) is drawn The following set of criteria is employed; 1. Maturity: Whether the technology is currently used in the market or it is in early or later search stages before being commercially mature 2. Cell size: the cell size, using standard feature size 3. Read Latency: the speed for reading values from memory cell 4. Write Latency: the speed for writing values to a memory cell 5. Endurance: the number of write cycles that a memory cell endures before eventually wearing out 6. Energy: energy spent per bit access. Related to dynamic power 7. Static power: whether power needs to be spent while accessing the memory device. This includes refreshing solid memory contents due to energy leakage or keeping disks spinning to achieve lower access latencies. 8. Non-volatility: whether the memory technology is volatile or not. Table 1 compares NEMs with traditional memory and storage technologies, in terms of performance, energy, density, and endurance [5]. FEATURE SRAM DRAM DISK FLASH STT-MRAM PCM ReRAM Maturity Product Product Product Product Advanced Development Advanced Development Advanced Development Read latency <10ns 10-60ns 8.5ms 25 µs <10ns 48ns <10ns Write latency <10ns 10-60ns 9.5ms 200µs 12.5ns 40-150ns 10ns Energy Per Bit Access >1pJ 2pJ 100- 1.000mJ 10nJ 2pJ 100pJ 0.02pJ Leakage Power High Medium High Low Low Low Low Endurance >1015 >1015 >1015 104 >1015 105 – 109 105 – 1011 Non volatility No No Yes Yes Yes Yes Yes Scalability Yes Yes Yes Yes Yes Yes Yes
  • 7. Emerging Memory Technologies www.theijes.com The IJES Page 67 V. REPLACING TECHNOLOGIES WITH NEMS Since NEMs are persistent and have similar mechanics (no moving parts) and lower energy consumption, it‟s natural to refer to them as persistent storage. NEMs would also perform as a disk replacement. 5.1. PCM as a Disk Replacement According to [3], when considering PCM as a disk replacement, the following would be considered; 1. Advantage of solid-state implementation (non-moving parts), very low latencies, low cost per bit and physical durability. 2. Poor write endurance (can be attacked through wear- leveling) and scaling down to a point where that can compete with disks (using multi-layers, multi-bit cells, etc.) 3. The prices of NEMs such as PCM will be much higher than disks, but over time it tends to decrease dramatically s market adoption progresses. 4. Its I/O are accessed as a block device. 5. Runtime error detection or correction mechanisms 6. Read or write should be asymmetrical, the read being as a single word. Table 2 below is a characteristic of NEM replacement PCM Characteristics of PCM Capacity 1 TB Read or write access time 100 ns Data rate > 1 GB/s Sustained I/O rate 238 000 sio/s (SIO: start I/O) Sustained bandwidth 975 mb/s Write endurance 1012 write 5.2. PCM or STT-MRAM as Disk Replacement To evaluate as a persistent storage, five evaluation criteria that should be taken into consideration; 1. Density: It is related with cost/GB which is the most important parameter. The cost/GB scales in proportion to the density, which is cell size divided by the number of bits per cell. 2. Power efficiency – important for mobile/embedded devices as well as for datacenters. 3. Access time: time interval between write/read request and the writing or availability of the data: Specially important for datacenters 4. Endurance: the number of times a bit can be rewritten 5. Retention: the length of time a bit remains stable. Table 3: Comparison of NEM Technologies for Disk Replacement From Table 3 above, the technologies with the best opportunity have a small cell size and the capability of storing multiple bits per cell. Phase Change Memory (PCM) and Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) appear to meet these criteria. It is concluded that the PCM and STT-MRAM are the technologies with higher probabilities of being a feasible replacement for disk in the future since they meet the criteria (small cell size and capability of storing multiple bits per cells). VI. CONCLUSION Since the limitations of the traditional technologies threatens the sustainable growth of performance and energy efficiency of computer systems, memory technology should be non-volatile, low-cost, high dense energy efficient, fast and within high endurance. Device Type DRAM Flash PCM STT-MRAM Maturity Product Product Product Product Density 83gb/chip 64gb/chip 512mb/chip 2mb/chip Cell size 6F2 4F2 5F2 4F2 MLC Capacity No 4 bits/cell 4bits/cell 4biits/cell Energy 2pJ 10pJ 100pJ 0.02pJ Access time 10/10ms 200/25ns 100/20ns 10/10ns Retention 1016/64ms 105/10yr 105/10yr 1016/10yr
  • 8. Emerging Memory Technologies www.theijes.com The IJES Page 68 Therefore, superior density, power, and non-volatility characteristics of emerging NEM technologies provide opportunities to break this traditional system organization. The problems in performance and strength as compared with traditional memory technologies is as a result of re- architecting processor caches, main memory, and other storage system. By taking the full advantages of the NEM technologies, computer performance can be highly enhanced. REFERENCES [1]. Chris H. Kim (2011): Modeling, Architecture, and Applications for Emerging Memory Technologies. Pp 44-45 [2]. Clinton W. Smullen, V , Vidyabhushan M, Anurag N, Sudhanva G, Mircea R. Stan.C (2011): Relaxing Non-Volatility for Fast and Energy-Efficient STT-RAM Caches. HPCA‟11 Proceedings of the 2011 IEEE 17th International Symposium on High Performance Computer Architecture Pp 50-61 [3]. Qureshi, M, Srinivasan,V and Rivers,J (2009): „„Scalable High Performance Main Memory System Using Phase-Change Memory Technology,‟‟ Proc. 36th Int‟l Symp. Computer Architecture (ISCA 09), ACM Press, pp. 24-33. [4]. Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, Yuan Xie (2009): Hybrid Cache Architecture with Disparate Memory Technologies:ISCA proceedings of the 36th annual international symposium on computer architecture pages 34-45 ACM New York, NY, USA [5]. Zhao, J; S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi Kiln (2015): Closing the performance gap between systems with and without persistence support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO‟13). ACM, New York, NY, 421– 432. DOI [6]. Zangeneh M, Joshi A. Design and optimization of nonvolatile multibit 1T1R resistive RAM. IEEE Trans VLSI System. 2014;22(8):1815–1822. [7]. Chen, A., Hutchby, J., Zhirnov, V., and Bourianoff, G. (2015). Emerging nanoelectronic devises, First Edition. John Wiley & Sons, Ltd. [8]. Manna S, Aluguri R, Katiyar A, Das S, Laha A, Osten H, Ray S. MBE-grown Si and Si1-xGex quantum dots embedded within epitaxial Gd2O3 on substrate for floating gate memory device. Nanotechnology. 2013;24:505709 [9]. Prakash A, Ouyang J, Lin JL, Yang Y.(2006) Polymer memory device based on conjugated polymer and gold nanoparticles. Journal of Applied Physics. 2006;100(5):054309–054314.