SlideShare for iOS
by Linkedin Corporation
FREE - On the App Store
by Linkedin Corporation
FREE - On the App Store
We have emailed the verification/download link to "".
Login to your email and click the link to download the file directly.
Check your bulk/spam folders if you can't find our mail.
Like this? Share it with your network
Share@inproceedings{teytaud:inria-00451416,...
@inproceedings{teytaud:inria-00451416,
hal_id = {inria-00451416},
url = {http://hal.inria.fr/inria-00451416},
title = {{Bias and variance in continuous EDA}},
author = {Teytaud, Fabien and Teytaud, Olivier},
abstract = {{Estimation of Distribution Algorithms are based on statistical estimates. We show that when combining classical tools from statistics, namely bias/variance decomposition, reweighting and quasi-randomization, we can strongly improve the convergence rate. All modifications are easy, compliant with most algorithms, and experimentally very efficient in particular in the parallel case (large offsprings).}},
language = {Anglais},
affiliation = {TAO - INRIA Futurs , Laboratoire de Recherche en Informatique - LRI , TAO - INRIA Saclay - Ile de France},
booktitle = {{EA 09}},
address = {Strasbourg, France},
audience = {internationale },
year = {2009},
month = May,
pdf = {http://hal.inria.fr/inria-00451416/PDF/decsigma.pdf},
}
Views
Actions
Embeds 0
Report content