*ESTUDIO MATEMATICAS EN LA UNIVERSIDADERLANGEN NUREMBERG.*EN 1915 INGRESA AL DEPARTAMENTO DEMATEMATICAS DE GOTINGA, QUE EN...
*FUE LA UNICA ALUMNA ENTRE 984 ESTUDIANTES,DESPUESDE PASAR LOS EXAMENES DE NUREMBERG EN 1903.*EN 1907 OBTUVO EL GRADO DE D...
*EN SU PRMERA MEMORIA CONVIRTIO LOS IDEALES NUMEROSENTEROS EN IDEALES;ES DECIR SUBCONJUNTOS DEFINIDOSAXIOMATICAMENTE EN CU...
Amalie Noether; Erlangen, Alemania, 1882-Bryn Mawr, EE UU,1935) Matemática alemana. Hija del eminente matemático MaxNoethe...
Professor Einstein Writes in Appreciation of a Fellow-Mathematician.To the Editor of The New York Times: The efforts of mo...
Within the past few days a distinguished mathematician, ProfessorEmmy Noether, formerly connected with the University of G...
Born in a Jewish family distinguished for the love of learning, EmmyNoether, who, in spite of the efforts of the great Göt...
Emmy
Emmy
Emmy
Emmy
Emmy
Emmy
Emmy
Upcoming SlideShare
Loading in...5
×

Emmy

339

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
339
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Emmy

  1. 1. *ESTUDIO MATEMATICAS EN LA UNIVERSIDADERLANGEN NUREMBERG.*EN 1915 INGRESA AL DEPARTAMENTO DEMATEMATICAS DE GOTINGA, QUE EN SU MOMENTOERA UN CENTRO DE INVESTIGACION MATEMATICA DEFAMA MUNDIAL.
  2. 2. *FUE LA UNICA ALUMNA ENTRE 984 ESTUDIANTES,DESPUESDE PASAR LOS EXAMENES DE NUREMBERG EN 1903.*EN 1907 OBTUVO EL GRADO DE DOCTORA “CUM LAUDE” CONLA MEMORIA TITULADA “SOBRE LOS SISTEMAS COMPLESTOSDE INVARIANTES PARA LAS FORMAS BICUADRADASTERNARIAS” QUE FUE PUBLICADA EN 1908.
  3. 3. *EN SU PRMERA MEMORIA CONVIRTIO LOS IDEALES NUMEROSENTEROS EN IDEALES;ES DECIR SUBCONJUNTOS DEFINIDOSAXIOMATICAMENTE EN CUALQUIER CONJUNTO CONESTRUCTURA DE ANILLO Y ESTABLECIO QUE UN ANILLOCONMUTATIVO QUE VERIFIQUE EL CELEBRE AXIOMA DE LACADENA ASCENDENTE DE IDEALES,(AHORA LLAMADO ANILLONOETHERIANO), TODO IDEAL TIENE UNA DESCOMPOSICIONMINIMA FINITA COMO INTERSECCION DE IDEALES PRIMOS.*EN LA SEGUNDA DETERMINO LOS AXIOMAS PARA PODERESTABLECER,EN UN ANILLO, LA DESCOMPOSICION DE UN IDEALCOMO PRODUCTO DE IDEALES PRIMOS.
  4. 4. Amalie Noether; Erlangen, Alemania, 1882-Bryn Mawr, EE UU,1935) Matemática alemana. Hija del eminente matemático MaxNoether, hubo de asistir a las clases impartidas por su padrecomo oyente, dada la imposibilidad de matricularse en launiversidad por su condición de mujer. Finalmente fue admitidaen Erlangen, donde se doctoró con un célebre trabajo sobre losinvariantes. Hilbert la invitó a impartir una serie de conferenciasen Gotinga, pero la oposición de parte del profesoradoúnicamente le permitió acceder a un puesto no oficial deprofesora asociada. La ascensión de los nazis al poder forzó suexilio en Estados Unidos; se estableció en Nueva Jersey, dondeprosiguió con sus trabajos en el Instituto de Estudios Avanzados dePrinceton y como profesora en Bryn Mawr. Noether estudió losconceptos matemáticos de anillo e ideal, unificó en un solocuerpo teórico las diferentes aproximaciones anteriores yreformuló en el marco del mismo la teoría de los invariantesalgebraicos; dotó de ese modo de un nuevo enfoque a lageometría algebraica.
  5. 5. Professor Einstein Writes in Appreciation of a Fellow-Mathematician.To the Editor of The New York Times: The efforts of most human-beings are consumed in the struggle fortheir daily bread, but most of those who are, either through fortune orsome special gift, relieved of this struggle are largely absorbed infurther improving their worldly lot. Beneath the effort directed towardthe accumulation of worldly goods lies all too frequently the illusionthat this is the most substantial and desirable end to be achieved; butthere is, fortunately, a minority composed of those who recognizeearly in their lives that the most beautiful and satisfying experiencesopen to humankind are not derived from the outside, but are boundup with the development of the individuals own feeling, thinking andacting. The genuine artists, investigators and thinkers have alwaysbeen persons of this kind. However inconspicuously the life of theseindividuals runs its course, none the less the fruits of their endeavors arethe most valuable contributions which one generation can make to itssuccessors.
  6. 6. Within the past few days a distinguished mathematician, ProfessorEmmy Noether, formerly connected with the University of Göttingenand for the past two years at Bryn Mawr College, died in her fifty-third year. In the judgment of the most competent livingmathematicians, Fräulein Noether was the most significant creativemathematical genius thus far produced since the higher educationof women began. In the realm of algebra, in which the most giftedmathematicians have been busy for centuries, she discoveredmethods which have proved of enormous importance in thedevelopment of the present-day younger generation ofmathematicians. Pure mathematics is, in its way, the poetry of logicalideas. One seeks the most general ideas of operation which will bringtogether in simple, logical and unified form the largest possible circleof formal relationships. In this effort toward logical beauty spiritualformulas are discovered necessary for the deeper penetration intothe laws of nature.
  7. 7. Born in a Jewish family distinguished for the love of learning, EmmyNoether, who, in spite of the efforts of the great Göttingenmathematician, Hilbert, never reached the academic standing due herin her own country, none the less surrounded herself with a group ofstudents and investigators at Göttingen, who have already becomedistinguished as teachers and investigators. Her unselfish, significant workover a period of many years was rewarded by the new rulers ofGermany with a dismissal, which cost her the means of maintaining hersimple life and the opportunity to carry on her mathematical studies.Farsighted friends of science in this country were fortunately able tomake such arrangements at Bryn Mawr College and at Princeton thatshe found in America up to the day of her death not only colleagueswho esteemed her friendship but grateful pupils whose enthusiasmmade her last years the happiest and perhaps the most fruitful of herentire career.ALBERT EINSTEIN.Princeton University, May 1, 1935.[New York Times May 5, 1935]
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×