16. plane frame analysis using the stiffness method

  • 1,645 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,645
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
0
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa !^> karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj (Plane frame analysis using the stiffness method) eKalKMnitEdl)anbgðajenAkñúgemeronelIkmunEdlerobrab;GMBIkaeRbIviFIPaBrwgRkajenAelI trusses nigFñwmRtUv)anBnøat nigGnuvtþeTAelIkarviPaKeRKag. viFIenHnwgbgðajfadMeNIrkarsRmab;edaHRsayman lkçN³RsedogKñaeTAnwgkaredaHRsaysRmab;Fñwm b:uEnþvaRtUvkareRbIm:aRTIsbMElg edaysarGgát;eRKagsßit kñúgTisepSg². !^>!> m:aRTIsPaBrwgRkajrbs;Ggát;eRKag (Frame-member stiffness matrix) enAkñúgkfaxNÐenH eyIgnwgbegáItm:aRTIsPaBrwgRkajsRmab;Ggát;eRKagEdlmanmuxkat;efr (prismatic frame member) BIRbB½n§kUGredaentMbn; x' , y ' , z ' ¬rUbTI 16-1¦. enATIenH Ggát;rgkmøaMg tamG½kS q N , q F kmøaMgkat; q N , q F , nigm:Um:g;Bt; q N , q F enARtg;cugCit nigcugq¶ayrbs;va x' x' y' y' z' z' erogKña. bnÞúkTaMgenHsuT§EtmanGMeBItamTiskUGredaenviC¢manCamYynwgbMlas;TIrbs;va. dUcKñakñúgkrNIFñwm m:Um:g; q N nig q F viC¢manvilRcasTisRTnicnaLika edaysarkareRbIviFanédsþaM viucT½rm:Um:g;manTistam z' z' G½kS z' EdlecjBIépÞRkdas. eyIg)anBicarNaTMnak;TMngrvagbnÞúk nigbM;las;TIEdlbNþalBIbnÞúkTaMgenHenAkñúgemeronelIkmun. bnÞúktamG½kSRtUv)anerobrab;edayeyageTAelIrUbTI 14-2 kmøaMgkat;eyageTAtamrUbTI 15-5 ehIym:Um:g; Bt;eyagtamrUbTI 15-6. tamviFItRmYtpl RbsinebIeKbUkbBa©ÚllT§plTaMgGs;enHcUlKña eKGacsresr TMnak;TMngrvagbMlas;TI nigbnÞúkcMnYnR)aMmYysRmab;Ggát;kñúgTRmg;m:aRTIsdUcxageRkam Plane frame analysis using the stiffness method T.Chhay -521
  • 2. Department of Civil Engineering NPIC N x' N y' N z' Fx' F y' Fz' ⎡q N x' ⎤ ⎡d ⎤ ⎢ ⎥ ⎡ AE AE ⎤ ⎢ N x' ⎥ 0 0 − 0 0 ⎥ ⎢ ⎥ ⎢ L L ⎢ ⎥ ⎢q N y ' ⎥ ⎢ 12 EI 6 EI 12 EI 6 EI ⎥ ⎢d N y ' ⎥ ⎢ ⎥ ⎢ 0 0 − 3 ⎥⎢ ⎥ ⎢ ⎥ ⎢ L3 L2 L L2 ⎥ ⎢ ⎥ ⎢q Nz' ⎥ ⎢ 0 6 EI 4 EI 0 − 2 6 EI 2 EI ⎥ ⎢ d ⎥ ⎥=⎢ L ⎥⎢ Nz' ⎢ L2 L L ⎥ (16-1) ⎢ ⎥ ⎢ AE AE ⎥⎢ ⎥ ⎢ q Fx ' ⎥ ⎢− 0 0 0 0 ⎥⎢ d F ⎥ ⎢ ⎥ ⎢ L L ⎥ ⎢ x' ⎥ ⎢ ⎥ ⎢ 0 12 EI − 3 − 2 6 EI 0 12 EI 6 EI ⎥ ⎢ − 2 ⎥ ⎥ ⎢ q Fy ' ⎥ ⎢ L L L3 L ⎥ ⎢ d Fy ' ⎥ ⎢ ⎥ ⎢ 6 EI 2 EI 6 EI 4 EI ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 0 0 − 2 ⎢ ⎥ ⎢ qF ⎥ ⎣ ⎢ L2 L L L ⎥⎢ d ⎥ ⎦ F ⎣ z' ⎦ ⎣ z' ⎦ b¤tamTRmg;kat; q = k'd (16-2) m:aRTIsPaBrwgRkajsRmab;Ggát; k ' pSMeLIgedayemKuNT§iBlcMnYn 36 EdltMNagedaybnÞúkenAelIGgát; enAeBlGgát;rgbMlas;TIÉktþaCak;lak;NamYy. CaBiess CYrQrnImYy²enAkñúgm:aRTIsnImYy²CabnÞúkkñúg Ggát;sMrab;bMlas;TIÉktþaEdlkMNt;edayelxkUd degree of freedom EdlmanbgðajenABIxagelICYrQr nImYy². eRKagEdleKRtUvKNnaRtUvEtbMeBjlkçxNÐlMnwg niglkçxNÐbMlas;TIRtUvKña. !^>@> m:aRTIsbMElgénbMlas;TI nigm:aRTIsbMElgénkmøaMg (Displacement and force transformation matrices) dUcenAkñúgkrNI trusses, eyIgRtUvbMElgbnÞúkkñúgGgát; q nigbMlas;TI d BIkUGredaen x' / y' / z' eTA CakUGredaenskl x, y, z . sRmab;ehtuplenH eKRtUvkarm:aRTIsbMElg. m:aRTIsbMElgbMlas;TI (displacement transformation matrix)³ eKmanGgát;eRKagdUcbgðajenAkñúgrUb TI 16-2a. enATIenH eyIgeXIjfabMlas;TI DN kñúgRbB½n§kUGredaensklbegáIt)anbMlas;TIkñúgkUGredaen x tMbn; d N x ' = D N x cos θ x d N y ' = − D N x cos θ y dUcKña bMlas;TI DN enAkñúgbMlas;TIskl ¬rUbTI 16-2b¦ begáIt)anbMlas;TIenAkñúgkUGedaentMbn; y d N x; = D N y cos θ y d N y ' = D N y cos θ x cugeRkay edaysarG½kS z' nigG½kS z RtYtsIuKña ¬manTisedAecjBIépÞesovePA¦ mMurgVil DN CMuvijG½kS z eFVI z eGaymanmMurgVilRtUvKña D N CMuvijG½kS z' . dUcenH z' karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -522
  • 3. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa DN z' = DN z tamrebobdUcKña RbsinebIeKeFVIeGaymanbMlas;TIskl DF tamTis x / DF tamTis y nigmMurgVil DF x y z enAxagcugq¶ayrbs;Ggát; smIkarbMElgKW d Fx ' = DFx cos θ x d Fy ' = − DFx cos θ y d Fx ' = DFy cos θ y d Fy ' = DFy cos θ x d Fz ' = DFz yk λ x = cosθ x , λ y = cosθ y CakUsIunUsR)ab;Tisrbs;Ggát; eyIgGacsresrrYmpSMKñaénbMlas;TICaTRmg; m:aRTIsdUcxageRkam ⎡d N x' ⎤ ⎡ λ x λ y 0 0 0 0⎤ ⎡ D N x ⎤ ⎢d ⎥ ⎢ ⎢ ⎥ ⎢ N y ' ⎥ ⎢− λ y λ x 0 0 0 0⎥ ⎢ D N y ⎥ ⎥ ⎢d N z' ⎥ ⎢ 0 0 1 0 0 0⎥ ⎢ D N z ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ (16-3) ⎢ d Fx ' ⎥ ⎢ 0 0 0 λx λ y 0⎥ ⎢ DFx ⎥ ⎢dF ⎥ ⎢ 0 0 0 − λy λ x 0⎥ ⎢ DFy ⎥ ⎢ y' ⎥ ⎢ ⎥⎢ ⎥ ⎢ d Fz ' ⎥ ⎢ 0 ⎣ ⎦ ⎣ 0 0 0 0 1⎥ ⎢ D Fz ⎥ ⎦⎣ ⎦ b¤ d = TD (16-4) tamkarGegát m:aRTIs T bMElgbMlas;TI D kñúgkUGredaenskl x, y, z TaMgR)aMmYyeGayeTACabMlas;TI d kñúgkUGredaentMbn; x' , y' , z' TaMgR)aMmYy. enATIenHm:aRTIs T RtUv)aneKsÁal;Cam:aRTIsbMElgbMlas;TI. m:aRTIsbMElgkMlaMg³ RbsinebIeyIgGnuvtþbgÁúMkmøaMgnImYy²eTAelIcugCitrbs;Ggát; eyIgGackMNt;BIrebob bMElgbgÁúMkmøaMgBIkUGredaentMbn;eGayeTACakUGredaenskl. edayGnuvtþ q N ¬rUbTI 16-3a¦ eyIgGacx' eXIjfa Q N x = q N x ' cos θ x Q N y = q N x ' cos θ y Plane frame analysis using the stiffness method T.Chhay -523
  • 4. Department of Civil Engineering NPIC RbsinebIeKGnuvtþ q N ¬rUbTI 16-3b¦ enaHbgÁúMkmøaMgrbs;vaKW y' Q N x = −q N y ' cos θ y Q N y = q N y ' cos θ x cugeRkay edaysar q N RtYtsIuCamYynwg QN eyIg)an z' Z QN z = q N z ' tamrebobdUcKña bnÞúkenARtg;cugGgát; q F x' , q Fy ' , q Fz ' nwgpþl;nUvbgÁúMkmøaMgdUcxageRkam³ Q Fx = q Fx ' cos θ x QFy = q Fx ' cos θ y Q Fx = − q Fy ' cos θ y QFy = q Fy ' cos θ x QFz = q Fz ' smIkarTaMgbIEdlpÁúMenAkñúgTRmg;m:aRTIsCamYynwg λ x = cosθ x , λ y = cos θ y pþl;nUv ⎡Q N x ⎤ ⎡ λ x − λ y 0 0 0 0⎤ ⎡ q N x ' ⎤ ⎢Q ⎥ ⎢ ⎢ ⎥ ⎢ N y ⎥ ⎢λ y λ x 0 0 0 0⎥ ⎢ q N y ' ⎥ ⎥ ⎢Q N z ⎥ ⎢ 0 0 1 0 0 0⎥ ⎢ q N z ' ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ (16-5) ⎢ Q Fx ⎥ ⎢ 0 0 0 λx − λ y 0⎥ ⎢ q Fx ' ⎥ ⎢ QF ⎥ ⎢ 0 0 0 λy λx 0⎥ ⎢ q Fy ' ⎥ ⎢ y⎥ ⎢ ⎥⎢ ⎥ ⎢ QFz ⎥ ⎢ 0 ⎣ ⎦ ⎣ 0 0 0 0 1⎥ ⎢ q Fz ' ⎥ ⎦⎣ ⎦ b¤ Q =TTq (16-6) enATIenH dUckarerobrab; m:aRTIs T T bMElgbnÞúkenAelIGgát;TaMgR)aMmYyEdlsresrenAkñúgkUGredaentMbn; eGayeTACabnÞúkTaMgR)aMmYyEdlsresrenAkñúgkUGredaenskl. !^>#> m:aRTIsPaBrwgRkajsklsRmab;Ggát;eRKag (Frame-Member Global Stiffness Matrix) eKGacpÁúMlT§plénkfaxNÐelIkmunedIm,IkMNt;m:aRTIsPaBrwgRkajsRmab;Ggát;EdlP¢ab;TMnak;TMng rvagbnÞúkskl Q eTAnwgbMlas;TIskl D . edIm,IeFVIEbbenH eKRtUvCMnYssmIkar 16-4 ¬ d = TD ¦ eTAkñúg smIkar 16-2 ¬ q = k ' d ¦. eyIg)an q = k 'TD (16-7) enATIenH kmøaMgkñúgGgát; q Tak;TgnwgbMlas;TIskl D . edayCMnYslT§plenHeTAkñúgsmIkar 16-6 ¬ Q = T T q ¦ eKTTYl)anlT§plcugeRkay Q = T T k 'TD (16-8) karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -524
  • 5. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa b¤ Q = kD Edl k = T T k 'T (16-9) enATIenH k Cam:aRTIsPaBrwgRkajsklsRmab;Ggát;. eyIgGacTTYltémørbs;vakñúgTRmg;TUeTAedayeRbI smIkar 16-5/ 16-1 nig 16-3 ehIyedayeFVIRbmaNviFIm:aRTIs eKnwgTTYl)anlT§plcugeRkay (16-10) cMNaMfam:aRTIsTMhM 6 × 6 Cam:aRTIssIuemRTI. elIsBIenH eKP¢ab;TItaMgrbs;FatunImYy²eTAnwgkUdenARtg;cug Cit N x , N y , N z EdlbnþedayelxkUdenARtg;cugq¶ay Fx , Fy , Fz EdlRtUv)anbgðajenAxagelIénCYr Qr nigtambeNþayCYredk. dUcm:aRTIs k ' CYrQrnImYy²rbs;m:aRTIs k CabnÞúkenAelIGgát;Rtg; node Edl KRtUvkaredIm,ITb;Tl;nwgbM;las;TIÉktþatamTisEdlkMNt;edayelxkUdrbs;CYrQr. ]TahrN_ CYrQrTI mYyrbs;m:aRTIs k CabnÞúkenAkñúgkUGredaensklRtg;cugCit nigcugq¶ayEdlbgáeLIgedaybMlas;TIÉktþa enARtg;cugCittamTis x eBalKW N x . !^>$> karGnuvtþénviFIPaBrwgRkajsMrab;karviPaKeRKag (Application of the stiffness method for frame analysis) enAeBlEdleKbegáItm:aRTIsPaBrwgRkajsRmab;Ggát;rYcehIy eKGacpÁúMBYkvabBa©ÚlKñaeTAkñúgm:aRTIs PaBrwgRkajsRmab;rcnasm<½n§tamrebobFmμta. edaysresrsmIkarm:aRTIssRmab;rcnasm<½n§ eKGac kMNt;bM;las;TIenARtg; node EdlminmankarTb; EdlbnþedaykmøaMgRbtikmμ nigkmøaMgkñúgenARtg; node. eKGacedaHRsaykmøaMgxagEdlmanGMeBIelIGgát; kMhusqÁgedaysarplitkmμ bERmbRmYlsItuNðPaB kmøaMgTRmeRTt nigkmøaMgTRmxagkñúgtamrebobdUcKñanwgGVIEdl)anerobrab;sRmab; truss nigFñwm. Plane frame analysis using the stiffness method T.Chhay -525
  • 6. Department of Civil Engineering NPIC dMeNIrkarkñúgkarviPaK (Procedure for analysis) viFIxageRkampþl;nUvmeFüa)ayedIm,IkMNt;bMlas;TI RbtikmμTMr kmøaMgkñúgrbs;Ggát;eRKagkMNt;eday sþaTic nigeRKagminkMNt;edaysþaTic. kareFVIkMNt;sMKal;³ EckeRKOgbgÁúMCaFatuGnnþtUc ehIykMNt;elxerogeGayGgát; nig node nImYy²rbs;va. eKEtgEt BnøatFatuenAcnøaHcMNucrbs;TMr cMNucrbs;bnÞúkRtg;cMNuc RCugEkg b¤tMNEdleKRtUvkarkMNt; bMlas;TI b¤kmøaMgkñúgrbs;Ggát;. begáItRbB½n§kUGredaen x, y, z CaTUeTAedIm,IPaBgayRsYlCamYynwgeKalEdlmanTItaMgenARtg; cMNuc node enAelIFatumYy nigG½kSEdlmanTItaMgy:agNaeGayRKb; node TaMgGs;mankUGredaen viC¢man. enARtg;cMNuc node nImYy²rbs;eRKag kMNt;bgÁúMelxkUdbIKW x, y, z . RKb;krNITaMgGs; eKeRbI elxkUdtUcbMputedIm,IkMNt;elxerogsRmab; degree of freedom EdlminmankarTb; Edlbnþeday elxkUdEdlenAsl; b¤elxkUdEdlmanelxerogFMedIm,IsMKal; degree of freedom Edlmankar Tb;. begáItbMlas;TIEdlsÁal; Dk nigbnÞúkxageRkAEdlsÁal; Qk . enAeBlbegáIt Qk eKRtUvR)akdkñúgkar bBa©ÚlbnÞúkbgáb;cugRbsinebIGgát;RTbnÞúkenAkNþal. m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúM³ GnuvtþsmIkar 16-10 edIm,IkMNt;m:aRTIsPaBrwgRkajsRmab;Ggát;nImYy²EdlsresrenAkñúgRbB½n§ kUGredaenskl. eKkMNt;kUsIunUsR)ab;Tis λ x nig λ y BIkUGredaen x, y éncugrbs;Ggát; ¬smIkar 14-5 nig 14-6¦. eRkayeBlsresrm:aRTIsPaBrwgRkajsRmab;Ggát;nImYy² nigeRkayeBlkMNt;CYredk nigCYrQr CamYynwgelxkUdcugCit nigcugq¶ay eKGacRc)ac;m:aRTIsTaMgenHbBa©ÚlKñaedIm,IbegáItm:aRTIsPaBrwg RkajsRmab;eRKOgbgÁúM K . sRmab;karepÞógpÞat;edayEpñk m:aRTIsPaBrwgRkajsRmab;Ggát; nig m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúMKYrEtCam:aRTIssIuemRTI. bMlas;TI nigkmøaMg³ EbgEckm:aRTIsPaBrwgRkajCaRkumdUcbgðajedaysmIkar 14-18. karBnøatenHeyIgTTYl)an karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -526
  • 7. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa Qk = K11 Du + K12 Dk Qu = K 21 Du + K 22 Dk eKkMNt;bMlas;TIEdlCaGBaØat Du BIsmIkarTImYyénsmIkarTaMgBIrxagelI. edayeRbItémø TaMgenH eKkMNt;kmøaMgRbtikmμ Qu BIsmIkarTIBIr. cugbBa©b; eKGackMNt;kmøaMgkñúg q enARtg;cug rbs;Ggát;BIsmIkar 16-7 eBalKW q = k 'TD RbsinebIlT§plénGBaØatEdl)anKNnaCaTMhMGviC¢man vabgðajfaBYkvaeFVIGMeBItamTiskUGredaen GviC¢man. ]TahrN_ 16-1³ kMNt;bnÞúkenARtg;tMNrbs;eRKagGgát;BIrEdlbgðajenAkñúgrUbTI 16-4a. yk I = ( ) / 1800 10 6 mm 4 A = 6000mm 2 ehIy E = 200GPa sRmab;Ggát;TaMgBIr. Plane frame analysis using the stiffness method T.Chhay -527
  • 8. Department of Civil Engineering NPIC dMeNaHRsay³ kareFVIkMNt;sMKal;³ tamkarGegát eRKagmanGgát;cMnYnBIr nig node cMnYnbIEdlRtUv)ankMNt;sMKal;dUc bgðajenAkñúgrUbTI 16-4b. eKalrbs;RbB½n§kUGredaensklRtUvmanTItaMgenARtg; ①. dMbUgelxkUdenA Rtg; node RtUv)ankMNt;eday degree of freedom EdlminmankarTb;. BIkarTb;enARtg;①nig③ nigbnÞúk Gnuvtþn_ eyIg)an ⎡20⎤ 1 ⎡0 ⎤ 6 ⎢ 0 ⎥2 ⎢0 ⎥ 7 ⎢ ⎥ Dk = ⎢ ⎥ Qk = ⎢ 0 ⎥ 3 ⎢0 ⎥ 8 ⎢ ⎥ ⎢ ⎥ ⎢ 0 ⎥4 ⎣0 ⎦ 9 ⎢ 0 ⎥5 ⎣ ⎦ m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúM³ tYxageRkammanlkçN³dUcKñasRmab;m:aRTIsPaBrwgRkajsRmab; Ggát;TaMgBIr³ AE 6(10 −3 )(200)(10 6 ) = = 200(103 )kN / m L 6 12 EI 12(200 )(10 6 )(180 )(10 −6 ) = = 2(10 3 )kN / m L3 63 6 EI = ( ) ( ) = 6(10 )kN / m 6(200 ) 10 6 (180 ) 10 −6 3 2 2 L 6 4 EI 4(200 )(10 )(180 )(10 ) = 24(10 )kN / m 6 −6 = 3 L 6 = 6 ( ) ( ) ( ) 2 EI 2(200 ) 10 (180 ) 10 −6 = 12 10 3 kN / m L 6 6−0 0−0 Ggát;elx !³ λx = 6 =1 λy = 6 =0 edayCMnYsTinñn½yeTAkñúgsmIkar 16-10 eyIg)an 4 6 5 1 2 3 ⎡ 200 0 0 − 200 0 0 ⎤ 4 ⎢ 0 2 6 0 − 2 − 6⎥ 6 ⎢ ⎥ ( ) k1 = 10 3 ⎢ 0 ⎢ 6 24 0 − 6 12 ⎥ 5 ⎥ ⎢− 200 0 0 200 0 0 ⎥ 1 ⎢ 0 −2 −6 0 2 − 6⎥ 2 ⎢ ⎥ ⎢ 0 ⎣ 6 12 0 − 6 24 ⎥ 3 ⎦ karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -528
  • 9. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa CYredk nigCYrQrénm:aRTIs 6 × 6 RtUv)ankMNt;edayelxkUdbI x, y, z CadMbUgenARtg;cugCit ehIybnþ edaycugq¶ayeBalKW $/ ^/ %/ !/ @/ # erogKña ¬rUbTI 16-4b¦. eKeFVIEbbenHsRmab;karpÁúMFatuelIkeRkay. Ggát;elx @³ λx = 6 − 6 = 0 6 λy = −6−0 6 = −1 edayCMnYsTinñn½yeTAkñúgsmIkar 16-10 eyIg)an 1 3 2 7 8 9 ⎡2 0 6 −2 0 6 ⎤1 ⎢ 0 200 0 0 − 200 0 ⎥2 ⎢ ⎥ ( ) k 2 = 10 3 ⎢ 6 ⎢ 0 24 − 6 0 12 ⎥ 3 ⎥ ⎢− 2 0 −6 2 0 − 6⎥ 7 ⎢ 0 − 200 0 0 200 0 ⎥8 ⎢ ⎥ ⎢6 ⎣ 0 12 − 6 0 24 ⎥ 9 ⎦ CaFmμta karkMNt;elxerogrbs;CUredk nigCYrQrKWeyageTAtamelxkUdTaMgbItamlMdab; x, y, z sRmab; cugCit nigcugq¶ay erogKña eBalKW !/ @/ # bnÞab;mk &/ */ ( ¬rUbTI 16-4b¦. m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúMRtUv)ankMNt;edaykarpÁúMm:aRTIs k1 nig k 2 . lT§plén Q = KD EdlbgðajedaykarbMEbkCaRkumKW 1 2 3 4 5 6 7 8 9 ⎡ 20 ⎤ ⎡ 202 0 6 − 200 0 0 − 2 0 6 ⎤ ⎡ D1 ⎤ ⎢0⎥ ⎢ 0 202 −6 0 − 6 − 2 0 − 200 0 ⎥ ⎢ D2 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢0⎥ ⎢ 6 −6 48 0 12 6 − 6 0 12 ⎥ ⎢ D3 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢0⎥ ⎢0⎥ ( ) ⎢− 200 = 10 3 ⎢ 0 0 −6 0 200 0 0 0 12 0 24 6 0 0 0 0 ⎥ ⎢ D4 ⎥ 0 ⎥ ⎢ D5 ⎥ (1) ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q6 ⎥ ⎢ 0 −2 6 0 6 2 0 0 0 ⎥⎢ 0 ⎥ ⎢Q ⎥ ⎢ −2 0 −6 0 0 0 2 0 − 6⎥ ⎢ 0 ⎥ ⎢ 7⎥ ⎢ ⎥⎢ ⎥ ⎢Q8 ⎥ ⎢ 0 − 200 0 0 0 0 0 200 0 ⎥ ⎢ 0 ⎥ ⎢Q ⎥ ⎢ 6 0 0 −6 24 ⎥ ⎢ 0 ⎥ ⎣ 9⎦ ⎣ 0 12 0 0 ⎦⎣ ⎦ kmøaMg nigbMlas;TI³ edayBnøatedIm,IedaHRsaybMlas;TI eyIgTTYl)an ⎡20⎤ ⎡ 202 0 6 − 200 0 ⎤ ⎡ D1 ⎤ ⎡0⎤ ⎢0⎥ ⎢ ⎥ ⎢ 0 ⎢ 202 − 6 0 − 6⎥ ⎢ D2 ⎥ ⎢0⎥ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ( ) ⎢ 0 ⎥ = 10 3 ⎢ 6 ⎢ − 6 48 0 12 ⎥ ⎢ D3 ⎥ + ⎢0⎥ ⎥⎢ ⎥ ⎢ ⎥ ⎢0⎥ ⎢− 200 0 0 200 0 ⎥ ⎢ D4 ⎥ ⎢0⎥ ⎢0⎥ ⎣ ⎦ ⎢ 0 ⎣ − 6 12 0 24 ⎥ ⎢ D5 ⎥ ⎢0⎥ ⎦⎣ ⎦ ⎣ ⎦ edayedaHRsaym:aRTIsxagelI eyIgTTYl)am Plane frame analysis using the stiffness method T.Chhay -529
  • 10. Department of Civil Engineering NPIC ( ) ⎡ D1 ⎤ ⎡ 17.51 10 − 3 m ⎤ ⎢D ⎥ ⎢ ( ) ⎢ 2 ⎥ ⎢ − 37.47 10 m ⎥ −6 ⎥ ( ) ⎢ D3 ⎥ = ⎢− 2.505 10 − 3 rad ⎥ ⎢ ⎥ ⎢ ( ) −3 ⎢ D4 ⎥ ⎢ 17.51 10 m ⎥ ⎥ ⎣ ⎦ ⎣( ) ⎢ D5 ⎥ ⎢ 1.243 10 − 3 rad ⎥ ⎦ edayeRbIlT§plTaMgenH eKGackMNt;kmøaMgRbtikmμBIsmIkar (1) dUcxageRkam 1 2 3 4 5 ( ) ⎡ 17.51 10 - 3 m ⎤ ⎡Q6 ⎤ ⎢Q ⎥ ( ) ⎡0 ⎢− 2 −2 6 ( )0 6⎤ ⎢ −6 ⎥ ⎡0⎤ ⎡− 7.50kN ⎤ ⎥ ⎢ − 37.47 10 m ⎥ ⎢0⎥ ⎢ − 20kN ⎥ ⎢ 7 ⎥ = 10 −6 ( ) 3 0 0 0⎥ ⎢ ⎢− 2.505 10 − 3 rad ⎥ + ⎢ ⎥ = ⎢ ⎥ ⎢Q8 ⎥ ⎢ 0 − 200 0 ⎥⎢ ⎥ ⎢0⎥ ⎢ 7.50kN ⎥ ⎢ ⎥ ⎢ ( ) 0 0 ⎥ ⎢ 17.51 10 − 3 m ⎥ ⎢ ⎥ ⎢ ⎥ ⎣Q9 ⎦ ⎣6 0 12 ( ) 0 0⎦ ⎢ −3 ⎣ 1.243 10 rad ⎦ ⎥ ⎣0⎦ ⎣ 75kN .m ⎦ eKGackMNt;kmøaMgkñúgenAkñúg node ② edayGnuvtþsmIkar 16-7 eTAelIGgát;elx 1. enATIenH k ' RtUv 1 )ankMNt;edaysmIkar 16-1 ehIy T edaysmIkar 16-3. dUcenH 1 4 6 5 1 2 3 ⎡ 200 0 0 − 200 0 0 ⎤ ⎡1 ⎢ 0 ⎢ ( ) ⎤4 0 0 0 0 0⎤ ⎡ 17.5 10 − 3 ⎥ ⎢ 2 6 0 − 2 6 ⎥ ⎢0 ⎥⎢ 1 0 0 0 0⎥ ⎢ ⎥ 0 ⎥6 ( ) q1 = k1T1 D = 10 3 ⎢ 0 6 24 0 − 6 12 ⎥ ⎢0 ( ) 0 1 0 0 0⎥ ⎢ 1.243 10 − 3 ⎥5 ⎢ ⎢− 200 0 0 200 0 0 ⎥ ⎢0 ⎥⎢ ( )⎥⎢ 0 0 1 0 0⎥ ⎢ 17.51 10 − 3 ⎥ ⎥1 ⎢ 0 −2 −6 0 2 − 6 ⎥ ⎢0 ( ) 0 0 0 1 0⎥ ⎢ − 37.47 10 6 ⎥⎢ ⎥2 ⎥ ⎢ ⎢ 0 ⎣ 6 12 0 ⎥⎢ − 6 24 ⎥ ⎢0 ⎦⎣ ( ) 0 0 0 0 1⎥ ⎢− 2.505 10 − 3 ⎦⎣ ⎥3 ⎦ cMNaMkardMerobd¾RtwmRtUvénFatuenAkñúgm:aRTIsdUcEdl)anbgðajedayelxkUdtamRCugxagrbs;CYrQr nigCYredk. edaHRsaym:aRTIsxagelI eyIg)an ⎡q 4 ⎤ ⎡ 0 ⎤ ⎢ q ⎥ ⎢ − 7.50kN ⎥ ⎢ 6⎥ ⎢ ⎥ ⎢ q5 ⎥ ⎢ 0 ⎥ ⎢ ⎥=⎢ ⎥ ⎢ q1 ⎥ ⎢ 0 ⎥ ⎢q 2 ⎥ ⎢ 7.50kN ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ q3 ⎥ ⎢− 45kN .m⎥ ⎣ ⎦ ⎣ ⎦ lT§plxagelIRtUv)anbgðajenAkñúgrUbTI 16-4c. TisedArbs;viucT½rTaMgenHRtUvKñanwgTisviC¢manEdlkMNt; enAkñúgrUbTI 16-1. elIsBIenH eKalrbs;kUGredaen x', y' , z' sßitenARtg;cugCitrbs;Ggát;. tamrebob dUcKña düaRkamGgÁesrIénGgát;elx @ RtUv)anbgðajenAkñúgrUbTI 16-4d. karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -530
  • 11. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ]TahrN_ 16-2³ kMNt;bnÞúkenARtg;cugrbs;Ggát;nImYy²éneRKagEdlbgðajenAkñúgrUbTI 16-5a. yk ( ) / I = 225 10 6 mm 4 A = 7500mm 2 ehIy E = 200GPa sRmab;Ggát;nImYy². dMeNaHRsay³ kareFVIkMNt;sMKal;³ edIm,IGnuvtþkarviPaKedayviFIm:aRTIs bnÞúkBRgayEdlmanGMeBIenAelIGgát;edkRtUv)an CMnYsedaym:Um:g;cugsmmUl nigkmøaMgkat;enAxagcugsmmUlEdlRtUv)anKNnaBIsþaTic nigBItaragenAkñúg emeronTI11. bnÞab;mkedayeRbIviFItRmYtpl lT§plEdlTTYl)ansRmab;eRKagenAkñúgrUbTI 16-5b RtUv )anEktRmUvsRmab;Ggát;enHedaybnÞúkEdlbgðajenAkñúgrUbTI 16-5c. dUcbgðajenAkñúgrUbTI 16-5b, node nigGgát;RtUv)andak;elxerog ehIyeKalrbs;RbB½n§kUGredaen sklRtUv)andak;enAkñúg node ①. tamFmμta dMbUgeKRtUvdak;elxkUdeTAelI degree of freedom Edlmin mankarTb;. dUcenH Plane frame analysis using the stiffness method T.Chhay -531
  • 12. Department of Civil Engineering NPIC ⎡0 ⎤ 4 ⎢0 ⎥ 5 ⎢ ⎥ ⎡ 0 ⎤1 ⎢0 ⎥ 6 Dk = ⎢ ⎥ Qk = ⎢− 150⎥ 2 ⎢ ⎥ ⎢0 ⎥ 7 ⎢ 150 ⎥ 3 ⎢0 ⎥ 8 ⎣ ⎦ ⎢ ⎥ ⎢0 ⎥ 9 ⎣ ⎦ m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§ Ggát;elx !³ EA 7500(10 −6 )(200)( 6 ) = 200(10 3 )kN / m 10 = L 7.5 12 EI = ( ) ( ) = 1280kN / m 12(200 ) 10 6 (225) 10 −6 L 3 (7.5) 3 6 EI 6(200)(225) = = 4800kN L2 (7.5)2 4(200)(225) = 24(10 3 )kN .m 4 EI = L 7.5 2 EI 2(200 )(225) L = 7.5 = 12 10 3 kN .m ( ) 6−0 4.5 − 0 λx = = 0.8 λy = = 0.6 7.5 7.5 edayGnuvtþsmIkar 16-10/ eyIg)an 4 6 5 1 2 3 ⎡ 128.46 95.39 − 2.88 − 128.46 − 95.39 − 2.88⎤ 4 ⎢ 95.39 72.82 3.84 − 95.39 − 72.82 3.84 ⎥ 6 ⎢ ⎥ ( ) k1 = 10 3 ⎢ − 2.88 ⎢ 3.84 24 2.88 − 3.84 12 ⎥ 5 ⎥ ⎢− 128.46 − 95.39 2.88 128.46 95.39 2.88 ⎥ 1 ⎢ − 95.39 − 72.84 − 3.84 95.39 72.82 − 3.84⎥ 2 ⎢ ⎥ ⎢ − 2.88 ⎣ 3.84 12 2.88 − 3.84 24 ⎥ 3 ⎦ Ggát;elx @³ = ( ) EA 7500 10 −6 (200 ) 10 6 ( ) = 250 10 3 kN / m( ) L 6 12 EI 12(200 )(225) = = 2500kN / m L3 (6)3 6 EI 6(200 )(225) = = 7500kN L2 (6)2 4 EI 4(200)(225) L = 6 = 30 10 3 kN .m ( ) karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -532
  • 13. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa 2 EI 2(200 )(225) L = 6 = 15 10 3 kN .m ( ) 12 − 6 4.5 − 4.5 λx = =1 λy = =0 6 6 dUcenH smIkar 16-10 køayCa 1 2 3 7 8 9 ⎡ 250 250 0 − 250 0 0 ⎤1 ⎢ 0 7.5 7.5 0 − 2.5 7.5 ⎥ 2 ⎢ ⎥ ( ) k 2 = 10 3 ⎢ 0 ⎢ 0 30 0 − 7.5 15 ⎥ 3 ⎥ ⎢− 250 0 0 250 0 0 ⎥7 ⎢ 0 − 2.5 − 7.5 0 2.5 − 7.5⎥ 8 ⎢ ⎥ ⎢ 0 ⎣ 7.5 15 0 − 7.5 30 ⎥ 9 ⎦ m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§EdlrYmbBa©ÚlenAkñúg Q = KD køayCa 1 2 3 4 5 6 7 8 9 ⎡ 0 ⎤ ⎡ 378.46 95.39 7.88 − 128.46 − 95.39 2.88 − 250 0 0 ⎤ ⎡ D1 ⎤ ⎢− 150⎥ ⎢ 95.39 75.32 3.66 − 95.39 − 72.82 − 3.84 0 − 2.5 7.5 ⎥ ⎢ D2 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢− 150⎥ ⎢ 2.88 3.66 54 − 2.88 3.84 12 0 − 7.5 15 ⎥ ⎢ D3 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ Q4 ⎥ ( ) 3 ⎢ − 128.46 − 95.39 − 2.88 128.46 95.39 − 2.88 ⎢ Q5 ⎥ = 10 ⎢ − 95.39 − 72.82 3.84 95.39 72.82 3.84 0 0 0 0 0 ⎥⎢ 0 ⎥ 0 ⎥⎢ 0 ⎥ (1) ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ Q6 ⎥ ⎢ 2.88 − 3.84 12 − 2.88 3.84 24 0 0 0 ⎥⎢ 0 ⎥ ⎢ Q ⎥ ⎢ − 20 0 0 0 0 0 250 0 0 ⎥⎢ 0 ⎥ ⎢ 7 ⎥ ⎢ ⎥⎢ ⎥ ⎢ Q8 ⎥ ⎢ 0 − 2.5 − 7.5 0 0 0 0 2.5 − 7.5⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ Q9 ⎦ ⎣ 0 7.5 15 0 0 0 0 − 7.5 30 ⎦ ⎣ 0 ⎦ bMlas;TI nigbnÞúk³ Bnøatm:aRTIsxagelIedIm,IkMNt;bMlas;TI nigedayedaHRsay eyIg)an ⎡ 0 ⎤ ⎡378.46 95.39 2.88⎤ ⎡ D1 ⎤ ⎡0⎤ ⎥ ( ) ⎢− 150⎥ = 10 3 ⎢ 95.39 75.32 3.66⎥ + ⎢ D ⎥ + ⎢0⎥ ⎢ ⎢ ⎥ ⎢ 2⎥ ⎢ ⎥ ⎢− 150⎦ ⎣ ⎥ ⎢ 2.88 3.66 54 ⎥ ⎢ D3 ⎥ ⎢0⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ D1 ⎤ ⎡ 0.716mm ⎤ ⎢ D ⎥ = ⎢ − 2.76mm ⎥ ⎢ 2⎥ ⎢ ⎥ ⎢ D3 ⎥ ⎢− 0.00261rad ⎥ ⎣ ⎦ ⎣ ⎦ edayeRbIlT§plTaMgenH eKGackMNt;kmøaMgRbtikmμTMrBIsmIkar (1) dUcbgðaj³ Plane frame analysis using the stiffness method T.Chhay -533
  • 14. Department of Civil Engineering NPIC ⎡Q4 ⎤ ⎡− 128.46 − 95.39 − 2.88⎤ ⎡0⎤ ⎡ 178.8kN ⎤ ⎢Q ⎥ ⎢ − 95.39 − 72.82 3.84 ⎥ ⎢0⎥ ⎢ 122.7 kN ⎥ ⎢ 5⎥ ⎢ ⎥⎡ 0.716 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢Q6 ⎥ ⎢ 2.88 − 3.84 12 ⎥ ⎢ ⎥+ ⎢0⎥ ⎢ − 18.7 kN .m ⎥ ⎢ ⎥=⎢ ⎥ − 2.76 ⎥ ⎢0⎥ = ⎢ − 179.0kN ⎥ 0 ⎥⎢ ⎢Q7 ⎥ ⎢ − 250 ⎢Q8 ⎥ ⎢ 0 0 − 2.5 − 7.5 ⎥⎣ ⎢− 0.00261 10 3 ( ) ⎥ ⎢ ⎥ ⎢ ⎦ ⎢0⎥ ⎢ 26.5kN ⎥ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢Q9 ⎥ ⎢ 0 ⎣ ⎦ ⎣ 7.5 15 ⎥⎦ ⎢0⎥ ⎢− 59.9kN .m ⎥ ⎣ ⎦ ⎣ ⎦ eKGackMNt;kmøaMgkñúgBIsmIkar 16-7 EdlGnuvtþeTAGgát;elx ! nigelx @. enAkñúgkrNIGgát;elx !/ q = k '1 T1 D Edl k '1 RtUv)ankMNt;BIsmIkar 16-1 ehIy T1 RtUv)ankMNt;BIsmIkar 16-3. dUcenH 4 5 6 1 2 3 ⎡q4 ⎤ ⎡ 200 0 0 − 200 0 0 ⎤ ⎡ 0.8 0.6 0 0 0 0⎤ ⎡ 0 ⎤ 4 ⎢q ⎥ ⎢ 0 1.28 4.8 0 − 1.28 4.8 ⎥ ⎢− 0.6 0.8 0 0 0 0⎥ ⎢ 0 ⎥ 5 ⎢ 5⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ q6 ⎥ = ⎢ 0 4.8 2.4 0 − 4.8 12 ⎥ ⎢ 0 0 1 0 0 0⎥ ⎢ 0 ⎥ 6 ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢q7 ⎥ ⎢− 200 0 0 200 0 0 ⎥⎢ 0 0 0 0.8 0 0⎥ ⎢ 0.716 ⎥ 1 ⎢ q8 ⎥ ⎢ 0 − 1.28 − 4.8 0 1.28 − 1.8⎥ ⎢ 0 0 0 − 0.6 0.8 0⎥ ⎢− 2.76⎥ 2 ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎣ q9 ⎦ ⎣ 0 4.8 12 0 − 4.8 24 ⎥ ⎢ 0 ⎦⎣ 0 0 0 0 1⎥ ⎢ − 2.61⎥ 3 ⎦⎣ ⎦ enATIenH elxkUdbgðajCYredk nigCYrQrsRmab;cugCit nigcugq¶ayrbs;Ggát; erogKña eBalKW $/ %/ ^ bnÞab;mk !/ @/ # rUbTI 16-5b. dUcenH ⎡q4 ⎤ ⎡ 216.6kN ⎤ ⎢ q ⎥ ⎢ − 9.15kN ⎥ ⎢ 5⎥ ⎢ ⎥ ⎢q6 ⎥ ⎢− 18.7kN .m⎥ ⎢ ⎥=⎢ ⎥ ⎢ q1 ⎥ ⎢ 216.6kN ⎥ ⎢q2 ⎥ ⎢ 9.15kN ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ q3 ⎥ ⎢ − 50kN .m ⎥ ⎣ ⎦ ⎣ ⎦ lT§plTaMgenHRtUv)anbgðajenAkñúgrUbTI 16-5d. karviPaKdUcKñaRtUv)aneFVIsRmab;Ggát;elx @. lT§plRtUv)anbgðajenAxageqVgkñúgrUbTI 16-5e. sRmab;Ggát;enH eyIgRtUvdak;bnÞúkénrUbTI 16-5c dUcenHlT§plcugeRkaysRmab;Ggát;elx @ RtUv)an bgðajenAxagsþaM. karviPaKeRKagkñúgbøg;edayeRbIviFIPaBrwgRkaj T.Chhay -534
  • 15. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa cMeNaT 16>1 kMNt;m:aRTIsPaBrwgRkaj K sRmab;eRKag. 16>4 kMNt;kmøaMgRbtikmμTRmkñúgenARtg; ① nig snμt; ① nig ③ CaTRmsnøak;. yk E = 200GPa ③ ¬cMeNaT 16>3¦. yk E = 200GPa / I = 243( 6 )mm 4 , A = 6000mm 2 sRmab;Ggát; 10 I = 300( 6 )mm 4 , A = 21( 3 )mm 2 sRmab; 10 10 nImYy². Ggát;nImYy². 16>5 kMNt;m:aRTIsPaBrwgRkaj K sRmab;eRKag. yk E = 200GPa I = 250(106 )mm 4 , A = 19( 3 )mm 2 sRmab;Ggát;nImYy². snμt; ② 10 nig③ CatMNbgáb;. 16>2 kMNt;kmøaMgkñúgenARtg;cugrbs;Ggát;nImYy² ¬cMeNaT 16>1¦. snμt; ① nig ③ CaTRmsnøak;. yk E = 200GPa / I = 243(106 )mm 4 , A = 6000mm 2 sRmab;Ggát;nImYy². 16>3 kMNt;m:aRTIsPaBrwgRkaj K sRmab;Ggát; nImYy²rbs;eRKag. snμt; ③Casnøak; nig ①Ca 16>6 kMNt;m:aRTIsPaBrwgRkaj K sRmab;Ggát; TRmbgáb;. yk E = 200GPa nImYy²rbs;eRKag. yk E = 200GPa I = 300( 6 )mm 4 , A = 21(10 3 )mm 2 sRmab; 10 I = 280( 6 )mm 4 , A = 18( 3 )mm 2 10 10 Ggát;nImYy². sRmab;Ggát;nImYy². Problems T.Chhay -535
  • 16. Department of Civil Engineering NPIC 16>7 kMNt;kmøaMgkñúgenARtg;cugrbs;Ggát;nImYy² ¬cMeNaT 16>6¦. yk E = 200GPa / I = 280( 6 )mm 4 , A = 18( 3 )mm 2 10 10 sRmab;Ggát;nImYy². 16>8 kMNt;m:aRTIsPaBrwgRkaj K sRmab;eRKag. yk E = 200GPa I = 250(106 )mm 4 , A = 12( 3 )mm 2 sRmab;Ggát;nImYy². 10 16>11 kMNt;mMurgVilkñúgenARtg; ① nig ③ nig kmøaMgRbtikmμenAkñúgcMeNaT 16>10. 16>12 kMNt;m:aRTIsPaBrwgRkaj K sRmab; Ggát;nImYy²rbs;eRKag. yk E = 200GPa I = 270( 6 )mm 4 , A = 6( 3 )mm 2 sRmab;Ggát; 10 10 nImYy². 16>9 kMNt;bgÁúMbMlas;TIRtg;① éncMeNaT 16>8. yk E = 200GPa I = 250(106 )mm 4 , A = 12( 3 )mm 2 sRmab;Ggát;nImYy². 10 16>10 kMNt;m:aRTIsPaBrwgRkaj K sRmab; eRKag. yk E = 200GPa I = 240(106 )mm 4 , A = 6( 3 )mm 2 sRmab;Ggát;nImYy². snμt; ① 10 16>13 kMNt;kmøaMgRbtikmμTRm ① nig ④ nig③ Casnøak; ehIy ②CatMNbgáb;. kñúgcMeNaT 16.13. tMN ① nig ④CatMN snøak; ehIy② nig③ CatMNbgáb;. yk cMeNaT T.Chhay -536
  • 17. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ( ) E = 200GPa I = 270 10 6 mm 4 , A = 9( )mm sRmab;Ggát; nImYy². 10 3 2 16>14 kMNt;m:aRTIsPaBrwgRkaj K sRmab; eRKagEdlmanGgát;BIr. yk E = 200GPa I = 350( )mm , A = 20( )mm sRmab; 10 6 4 10 3 2 Ggát;nImYy². tMN ① nig③ CatMNsnøak; ehIy ②CatMNbgáb;. 16>15 kMNt;kmøaMgRbtikmμTRmenARtg; ① nig③ éncMeNaT 16>14. Problems T.Chhay -537