• Save
14. truss analysis using the stiffness method
Upcoming SlideShare
Loading in...5
×
 

14. truss analysis using the stiffness method

on

  • 1,391 views

 

Statistics

Views

Total Views
1,391
Views on SlideShare
1,297
Embed Views
94

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 94

http://civilnpic.wordpress.com 94

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

14. truss analysis using the stiffness method 14. truss analysis using the stiffness method Document Transcript

  • Department of Civil Engineering NPIC !$> karviPaK truss edayeRbIviFIPaBrwgRkaj Truss analysis using the stiffness method enAkñúgemeronenH eyIgnwgBnül;BIeKalkarN_mUldæanénkareRbIR)as;viFIPaBrwgRkajsRmab;viPaKeRKOg bgÁúM. viFIenHmanPaBsμúKsμajsRmab;karedaHRsayedayéd EtvasaksmsRmab;eRbICamYynwgkMuBüÚT½r. enAkñúgemeronenHmanbgðajBI]TahrN_Gnuvtþn_eTAelI truss kñúgbøg;. bnÞab;mk eyIgnwgeRbIviFIenH sRmab; truss kñúglMh. eyIgnwgerobrab;BIkarGnuvtþviFIenHsRmab;Fñwm nigeRKagenAemeroneRkay. !$>!> eKalkarN_mUldæanénviFIPaBrwgRkaj (Fundamentals of the stiffness method) eKmanmeFüa)ayBIrsRmab;viPaKrcnasm<½n§edayeRbIviFIm:aRTIs. viFIPaBrwgRkajEdlRtUveRbI enAkñúgemeronenH nigemeroneRkayCakarviPaKedayeRbIviFIbMlas;TI. viFIkmøaMg EdleKehAfaviFI flexibility ¬Edlerobrab;enAkñúgkfaxNÐ 10-1¦ k¾GaceRbIedIm,IviPaKrcnasm<½n§ b:uEnþviFIenHminRtUv)an bgðajenAkñúgesovePAenHeT. mUlehtucm,gKW eKGaceRbIviFIPaBrwgRkajsRmab;viPaKrcnasm<½n§kMNt; edaysþaTic nigrcnasm<½n§minkMNt;edaysþaTic cMENkÉviFI flexibility RtUvkardMeNIrkarepSgsRmab; krNInImYy²énkrNITaMgBIr. ehIyviFIPaBrwgRkajpþl;eGaybMlas;TI nigkmøaMgedaypÞal; cMENkÉ viFI flexibility minpþl;eGaybMlas;TIedaypÞal;eT. elIsBIenH eKmanPaBgayRsYlsresrrUbmnþ m:aRTIsEdlcaM)ac;sRmab;RbtþibtþikarkMuBüÚT½redayeRbIviFIPaBrwgRkaj ehIyenAeBleKeFVIvarYc eK GacviPaKeRKOgbgÁúMedaykMuBüÚT½ry:agmanRbsiT§PaB. karGnuvtþviFIPaBrwgRkajTamTarnUvkarbMEbkeRKOgbgÁúMCaes‘rIén finite elements ehIyeK RtUvkMNt;GtþsBaØaNeGaycMNuccugrbs;Ggát;Ca node. sRmab;karviPaK truss, finite element Ca Ggát;nImYy²EdlpSMCa truss ehIy node CatMN. eKRtUvkMNt;lkçN³kmøaMg nigbMlas;TIrbs;Ggát; nImYy² ehIyeKRtUveFVITMnak;TMngrvagkmøaMg nigbMlas;TIedayeRbIsmIkarlMnwgkmøaMgEdlsresrenA Rtg; node. bnÞab;mk eKerobcMTMnak;TMngTaMgenH ¬sRmab;rcnasm<½n§TaMgmUl¦ CaRkumbBa©ÚlKña EdleKeGayeQμaHfa structure stiffness matrix K. enAeBlEdleKbegáItm:aRTIsrYcehIy eKGac kMNt;bMlas;TIrbs; node sRmab;bnÞúkenAelIrcnasm<½n§. enAeBlEdleKsÁal;bMlas;TIrYcehIy eK GackMNt;kmøaMgkñúgrbs;eRKOgbgÁúMedayeRbITMnak;TMngrvagkmøaMg nigbMlas;TIsRmab;Ggát;. karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -464
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa munnwgbegáItdMeNIrkarsRmab;GnuvtþviFIPaBrwgRkaj CaCMhandMbUgeyIgcaM)ac;yl;dwgBIniym n½y nigeKalKMnitmYycMnYn³ karkMNt;GtþsBaØaNrbs;Ggát; nig node³ CMhanmYyénCMhandMbUgkñúgkarGnuvtþviFIPaBrwgRkaj KWkMNt;GtþsBaØaNGgát;rbs;rcnasm<½n§ nig node rbs;va. eyIgnwgkMNt;Ggát;edaybg;elxEdl B½T§CMuvijedaykaer ehIyelxEdlB½T§CMuvijedayrgVg;kMNt;eGay node. ehIy eKk¾RtUvkMNt;cugCit nigcugq¶ayrbs;Ggát;edayeRbIk,alRBYjEdlvacg¥úleTAcugq¶ay. ]TahrN_énkarkMNt;Ggát; node nigTisedAsMrab; truss RtUv)anbgðajenAkñúgrUbTI 14-1a. kUGredaenskl nigkUGredaenGgát;³ edaysarbnÞúk nigbMlas;TICaTMhMviucT½r enaHeKcaM)ac;RtUv begáItRbB½n§kUGredaenedIm,IkMNt;TisedArbs;vaeGay)anRtwmRtUv. enATIenH eyIgnwgeRbIRbB½n§kUGr edaenBIrRbePTepSgKña. RbB½n§kUGredaenskl b¤RbB½n§kUGredaenrcnasm<½n§ ¬ x, y ¦ RtUveRbIedIm,I kMNt;TisedAénbnÞúkxageRkA nigTisedAénbgÁúM;bMlas;TIenARtg; node ¬rUbTI 14-1a¦. RbB½n§kUGr edaentMbn; b¤RbB½n§kUGredaenGgát;RtUv)aneRbIsRmab;Ggát;nImYy²edIm,IkMNt;TisedAénbMlas;TI rbs;va nigkmøaMgkñúgrbs;va. RbB½n§enHRtUv)ankMNt;edayeRbIG½kS x' , y' CamYynwgKl;enARtg; node Cit ehIyG½kS x' latsn§wgeq<aHeTArk node q¶ay. ]TahrN_sRmab;Ggát; truss elx $ RtUv )anbgðajenAkñúgrUbTI 14-1b. PaBminkMNt;sIueNm:aTic³ dUckarerobrab;enAkñúgkfaxNÐ 11-1, degree of freedom Edlminman karTb;sRmab; truss CaGBaØatdMbUgénviFIbMlas;TI dUcenHeKRtUvEtkMNt;va. tamc,ab;TUeTA eKman degree of freedom b¤bMlas;TIEdlGacekItmancMnYnBIr sMrab;tMN (node). sRmab;karGnuvtþ degree of freedom nImYy²RtUv)ankMNt;enAelI truss edayeRbIelxkUd ¬EdlbgðajenARtg;tMN b¤ Truss analysis using the stiffness method T.Chhay -465
  • Department of Civil Engineering NPIC node ¦ ehIyeKeRbI k,alRBYjedaysMGageTAelIkUGredaensklviC¢man. ]TahrN_ truss enAkñúgrUbTI 14-1a man degree of freedom cMnYn8 EdlRtUv)ankMNt;;edayelxkUdBIelx 1 dl; elx 8 dUcbgðaj. Truss enHminkMNt;edaysIueNm:aTicdWeRkTI5 edaysarbMlas;TIEdlGac ekItmanTaMg 8enH elx1 dl;elx5 CaGBaØat b¤ degree of freedom EdlminmankarTb; ehIyelx 6 dl;elx8Ca degree of freedom EdlmankarTb;. edaysarmankarTb; bMlas;TIenATIenHRtUvesμI sUnü. sRmab;karGnuvtþbnþbnÞab; eyIgeRbIelxkUdtUc²sRmab;sMKal;bMlas;TIEdleyIgminsÁal; ¬degree of freedom EdlminTb;¦ ehIyelxkUcFM²sRmab;sMKal;bMlas;TIEdlsÁal; ¬degree of freedom EdlTb;¦. mUlehtukñúgkareFVIEbbenH edIm,IgayRsYlerobcM structure stiffness matrix dUcenHeyIgnwgGackMNt;bMlas;TIEdlCaGBaØatedaypÞal;. eRkayeBleyIgbg;elxeGay truss ehIykMNt;elxkUd eyIgGacKNna structure stiffness matrix K. edIm,IeFVIEbbenH dMbUgeyIgRtUvbegáIt member stiffness matrix k’ sRmab; Ggát;nImYy²rbs; truss. eKeRbIm:aRTIsenHedIm,IbgáajTMnak;TMngrvagbnÞúk nigbMlas;TIrbs;Ggát; edayeRbIkUGredaentMbn;. edaysarGgát;TaMgGs;rbs; truss minmanTisdUcKña eyIgRtUvbMElgTMhM TaMgenHBIkUGredaentMbn; x' , y' eTACakUGredaenskl x, y edayeRbIm:aRTIsbMElgkmøaMg nig bMlas;TI (force and displacement transformation matrices). eRkaybegáItrYcehIy eyIgGac bMElgm:aRTIsPaBrwgRkajrbs;Ggát;BIkUGredaentMbn;eTACakUGredaenskl ehIybnÞab;mkpÁúMva edIm,IbegáItCam:aRTIsPaBrwgRkajrcnasm<½n§. edayeRbI K ¬dUckarbgðajxagelI¦ dMbUgeyIgGac kMNt;bMlas;TIrbs; node bnÞab;mkeyIgGackMNt;kmøaMgRbtikmμTMr nigcugeRkayKWkmøaMgkñúgrbs; Ggát;. eyIgnwgbegáItviFIenH. !$>@> m:aRTIsPaBrwgRkajrbs;Ggát; (Member stiffness matrix) enAkñúgkfaxNÐenH eyIgnwgbegáItm:aRTIsPaBrwgRkajsMrab;Ggát;eTalrbs; truss edayeRbI kUGredaentMbn; x' , y' dUcbgðajenAkñúgrUbTI 14-2. tYenAkñúgm:aRTIsenHCaTMnak;TMngrvagbnÞúk nig bMlas;TIsRmab;Ggát;. Ggát;rbs; truss Gacpøas;TI)anEttamG½kS x' rbs;vab:ueNÑaH edaysarbnÞúkGnuvtþtamTis enH. dUcenH eKGacmanbMlas;TIÉkraCüBIr. enAeBleKeGaycugCitrbs;Ggát;manbMlas;TIviC¢man karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -466
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa dN ehIycMENkÉcugq¶ayRtUv)anTb;edaysnøak; ¬rUbTI 14-2a¦ enaHkmøaMgEdlekItmanenARtg; cugrbs;Ggát;KW AE AE q' N = dN q' F = − dN L L cMNaMfa q' GviC¢manedaysarsßanPaBlMnwg vaRtUveFVIGMeBItamTisedAGviC¢man x' . dUcKña bMlas;TI F viC¢man d enARtg;cugq¶ayedaycugCitenAEtTb;edaysnøak; ¬rUbTI 14-2b¦ pþl;nUvkmøaMgkñúgGgát; F AE AE q' ' N = − dF q' ' F = dF L L edaykareFIVtRmYtpl ¬rUbTI 14-2c¦ kmøaMgers‘ultg;EdlbgáedaybMlas;TITaMgBI AE AE qN = dN − dF (14-1) L L AE AE qF = dF − dN (14-2) L L eKGacsresrsmIkarTMnak;TMngrvagbnÞúk nigkmøaMgkñúgTRmg;m:aRTIs*Ca ⎡q N ⎤ AE ⎡ 1 − 1⎤ ⎡d N ⎤ ⎢ q ⎥ = L ⎢− 1 1 ⎥ ⎢ d ⎥ ⎣ F⎦ ⎣ ⎦⎣ F ⎦ b¤ q = k ' d (14-3) Edl k ' = AE ⎡−11 −11⎤ L ⎢ ⎥ (14-4) ⎣ ⎦ m:aRTIs k ' RtUv)aneKeGayeQμaHfam:aRTIsPaBrwgRkajsRmab;Ggát; ehIyvamanTRmg;dUcKñasRmab; Ggát;nImYy²rbs; truss. tYTaMgbYnEdlbegáItCam:aRTIsenHRtUv)aneKeGayeQμaHfaemKuNT§iBl kRmajsRmab;Ggát; (member stiffness influence coefficient) k' . k' CakmøaMgenARtg;tMN i ij ij enAeBltMN j ekItmanbMlas;TImYyÉktþa. ]TahrN_ RbsinebI i = j = 1 enaH k ' CakmøaMgenA11 Rtg;cugCit enAeBlcugq¶ayRtUv)anTb;edaybgáb; ehIycugCitrgbMlas;TI d = 1 eBalKW N AE q N = k '11 = L dUcKña eKkMNt;kmøaMgenAcugq¶ayBI i = 2 / j =1 dUcenH AE q F = k ' 21 = − L tYTaMgBIrenHCaCYrQrTImYyrbs;m:aRTIsPaBrwgRkajGgát;. tamrebobdUcKña CYrQrTIBIrrbs;m:aRTIs enHCakmøaMgenAkñúgGgát;enAeBlcugq¶ayrbs;Ggát;rgbMlas;TIÉktþa. * ]bsm<½n§ A pþl;eGaynUvkarrMlwkBIm:aRTIs. Truss analysis using the stiffness method T.Chhay -467
  • Department of Civil Engineering NPIC !$>#> m:aRTIsbMElgénbMlas;TI nigkmøaMg (Displacement and force transformation matrices) edaysar truss pSMeLIgedayGgát;eRcIn eyIgnwg begáItviFIsRmab;bMElgkmøaMgkñúgGgát; q nig bMlas;TI d EdlkMNt;enAkñúgkUGredaentMbn;eGayeTACakUGredaen skl. edIm,IPaBgayRsYl eyIgnwgBicarNakUGredaen sklviC¢man x manTisedAeTAsþaM ehIy y manTisedA eLIgelI. mMurvagG½kSskl x, y nigG½kStMbn; x' , y' RtUv)ankMNt;eday θ x ehIy θ y dUcbgðajenAkñúgrUbTI 14-3. eyIgnwgeRbI kUsIunUsénmMuTaMgenHenAkñúgkarviPaK m:aRTIsdUcteTA. eyIgtag λ x = cosθ x ehIy λ y = cosθ y . eKGackMNt;témøCaelxsRmab; λ x nig λ y y:aggayedayeRbIkMuBüÚT½r enAeBleKkMNt; kUGredaen x, y éncugCit N nigcugq¶ay F rbs; Ggát;rYcehIy. ]TahrN_ eKmanGgát; NF dUcbgðajenAkñúgrUbTI 14-4. enATIenH kUGredaenrbs; N nig F KW (x N , y N ) nig (x F , y F ) erogKña . dUcenH * xF − x N xF − xN λ x = cos θ x = = (14-5) L (x F − xN ) + (yF − y N ) 2 2 yF − yN yF − yN λ y = cos θ y = = (14-6) L (x F − xN ) + (yF − yN ) 2 2 * Kl;rbs;kUGredaenGacsßitenATINak¾)an eGayEtmanlkçN³gayRsYl. b:uEnþ CaTUeTA vaeRcInsßitenARtg;TItaMgNaEdl kUGredaenrbs; node TaMgGs;viC¢man dUcbgðajenAkñúgrUbTI 14-4. karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -468
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa sBaØanBVnþenAkñúgsmIkarTUeTATaMgenHnwgKitedaysV½yRbvtþisRmab;Ggát;EdlsßitenAkñúgkaRdg;NamYy rbs;bøg; xy . m:aRTIsbMElgbMlas;TI³ enAkñúgkUGredaenskl cugnImYy²rbs;Ggát;Gacman degree of freedom b¤ bMlas;TIÉkraCüBIr eBalKWtMN N man DN nig DN ¬rUbTI 14-5a nig 14-5b¦ ehIytMN N man x y D F nig DF ¬rUbTI 14-5c nig14-5d¦. eyIgnwgBicarNabMlas;TITaMgenHdac;edayELkBIKñaedIm,I x y kMNt;bgÁúMbMlas;TIrbs;vatambeNþayGgát;. enAeBlcugq¶ayRtUv)anTb;edaysnøak; ehIycugCitmanbM las;TItamkUGredaenskl DN ¬rUbTI 14-5a¦ bMlas;TI ¬kMhUcRTg;RTay¦ EdlRtUvKñatambeNþay x Ggát;KW DN cosθ x *. dUcKña bMlas;TI DN nwgeFVIeGayGgát;pøas;TI DN cosθ y tambeNþayG½kS x' x y y ¬rUbTI 14-5b¦. T§iBlénbMlas;TIsklTaMgeFVIeGayGgát;pøas;TI. d N = D N x cos θ x + D N y cos θ y tamrebobdUcKña bMlas;TIviC¢man DF nig DF erogKña EdlGnuvtþenARtg;cugq¶ay F cMENkÉcugCit x y RtUv)anTb;edaysnøak; ¬rUbTI 14-5c nig 14-5d¦ nwgeFVIeGayGgát;pøas;TI d F = D Fx cos θ x + D Fy cos θ y edayeGay λ x = cosθ x nig λ y = cosθ y CakUsIunUsR)ab;Tis (direction cosine) sRmab;Ggát; eyIg)an d N = DN x λ x + DN y λ y d F = DFx λ x + DFy λ y EdleKGacsresrvaCaTRmg;m:aRTIs ⎡ DN x ⎤ ⎢ ⎥ ⎡ d N ⎤ ⎡λ x λ y 0 0 ⎤ ⎢ D N y ⎥ ⎢d ⎥ = ⎢ 0 0 λ λ ⎥⎢ D ⎥ (14-7) ⎣ F⎦ ⎣ x y⎦ ⎢ x⎥ F ⎢ D Fy ⎥ ⎣ ⎦ * eKminKitBIbMEbMrYl θ x b¤ θ y edaysarvamantémøtUceBk. Truss analysis using the stiffness method T.Chhay -469
  • Department of Civil Engineering NPIC b¤ d = TD (14-8) ⎡λ x λ y 0 0 ⎤ Edl T =⎢ ⎥ (14-9) ⎣ 0 0 λx λ y ⎦ BIkarbMEbkxagelI T bMElgBIbMlas;TI D kñúgkUGredaenskl x, y TaMgbYneGayeTACabMlas;TI d kñúg kUGredaentMbn; x' cMnYnBIr. dUcenH T Cam:aRTIsbMElgbMlas;TI. m:aRTIsbMElgkmøaMg³ BicarNakarGnuvtþkmøaMg q eTAelIcugCitrbs;Ggát; cMENkcugq¶ayRtUv)anTb; N edaysnøak; ¬rUbTI 14-6a¦. enATIenH bgÁúMkmøaMgsklrbs; q N enARtg; N KW Q N x = q N cos x Q N y = q N cos θ y dUcKña RbsinebI q F RtUv)anGnuvtþeTAelIr)ar ¬rUbTI 14-6b¦ bgÁúMkmøaMgsklenARtg; F KW Q Fx = q F cos θ x Q Fy = q F cos θ y edayeRbIkUsIunUsR)ab;Tis λ x = cosθ x / λ y = cosθ y smIkarTaMgenHkøayCa QN x = q N λ x QN y = q N λ y Q Fx = q F λ x Q Fy = q F λ y EdleKGacsresrvaCaTRmg;m:aRTIsdUcxageRkam karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -470
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ⎡Q N x ⎤ ⎡ λ x 0⎤ ⎢Q ⎥ ⎢ ⎥ ⎢ N y ⎥ = ⎢λ y 0⎥ ⎡q N ⎤ λx ⎥ ⎢qF ⎥ (14-10) ⎢ QFx ⎥ ⎢ 0 ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ Q Fy ⎥ ⎢ 0 ⎣ ⎦ ⎣ λy ⎥ ⎦ b¤ Q =TTq (14-11) ⎡λ x 0⎤ ⎢λ 0⎥ Edl TT =⎢ ⎢0 y ⎥ λx ⎥ (14-12) ⎢ ⎥ ⎢0 ⎣ λy ⎥ ⎦ enAkñúgkrNIenH T T bMElgBIkmøaMg q EdlmanGMeBIenARtg;cugrbs;Ggát;kñúgkUGredaentMbn; x' eGayeTA CakmøaMg Q EdlmanbgÁúMbYnkñúgkUGredaenskl x, y . tamkareRbobeFob m:aRTIsbMElgkmøaMgCa m:aRTIs transpose énm:aRTIsbMElgbMlas;TI ¬smIkar 14-9¦. !$>$> m:aRTIsPaBrwgRkajrbs;Ggát;kñúgkUGredaenskl (Member global stiffness matrix) eyIgnwgpþúMlT§plenAkñúgkfaxNÐxagelI ehIykMNt;m:aRTIsPaBrwgRkajsRmab;Ggát;EdlTak; TgnwgbgÁúMkmøaMgskl Q nigbMlas;TIskl D rbs;Ggát;. RbsinebIeyIgCMnYssmIkar 14-8 ¬ d = TD ¦ eTAkñúgsmIkar 14-3 ¬ q = k ' d ¦ eyIgGackMNt;kmøaMg q rbs;Ggát;CaGnuKmn_énbMlas;TIskl D enA Rtg;cMNuccugrbs;va eBalKW q = k ' TD (14-13) edayCMnYssmIkarenHeTAkñúgsmIkar 14-11 ¬ Q = T T q ¦ enaHeyIgnwgTTYl)anlT§plcugeRkay Q = T T k ' TD b¤ Q = KD (14-14) Truss analysis using the stiffness method T.Chhay -471
  • Department of Civil Engineering NPIC Edk k = T T k 'T (14-15) m:aRTIs k Cam:aRTIsPaBrwgRkajsRmab;Ggát;enAkñúgkUGredaenskl. edaysareKsÁal; T T / T nig k ' enaHeyIg)an ⎡λ x 0⎤ ⎢λ 0 ⎥ AE ⎡ 1 − 1⎤ ⎡λ x λ y 0 0 ⎤ k=⎢ ⎥ y ⎢0 λ x ⎥ L ⎢− 1 1 ⎥ ⎢ 0 0 λ x λ y ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢0 ⎣ λy ⎥⎦ edayKNnaedaHRsaym:aRTIsxagelI eyIg)an Nx Ny Fx Fy ⎡ λ2 x λxλ y − λ2 x − λxλ y ⎤ N x AE ⎢ ⎥ k= ⎢ λx λ y λ2 y − λxλ y − λ2 ⎥ N y y (14-16) L ⎢ ⎢ − λx 2 − λxλ y λ2 x λ x λ y ⎥ Fx ⎥ ⎢− λ x λ y − λ2 λxλ y 2 ⎥F λy ⎦ y ⎣ y TItaMgrbs;tYnImYy³enAkñúgm:aRTIssIuemRTITMhM 4 × 4 tMNageGay degree of freedom sklnImYy²Edl pSMCamYynwgcugCit N nigCamYynwgcugq¶ay F . vaRtUv)anbgðajedaynimitþsBaØénelxkUdEdlenAtam CYredk nigCYrQr eBalKW N x , N y , Fx , Fy . enATIenH k CaTMnak;TMngrvagkmøaMg nigbMlas;TIsRmab; Ggát;enAeBlEdlbgÁúMénkmøaMg nigbMlas;TIenAcugrbs;Ggát;sßitenAkñúgkUGredaenskl b¤G½kS x, y . dUc enHtYnImYy²enAkñúgm:aRTIsCaemKuNT§iBlPaBrwgRkaj (stiffness influence coefficient) K ij Edl bgðajbgÁúMkmøaMg x b¤ y enARtg; i EdlcaM)ac;edIm,IeFVIeGaymanbgÁúMbMlas;TIÉktþa x b¤ y enARtg; j . Ca lT§pl CYrQrnImYy²rbs;m:aRTIstMNageGaybgÁúMkmøaMgbYnEdlekItmanenARtg;cugrbs;Ggát;enAeBl cugGgát;rgbMlas;TIÉktþaEdlTak;TgnwgCYrQrebs;m:aRTIsenaH. ]TahrN_ bMlas;TIÉktþa DN = 1 x nwgbegáItbgÁúMkmøaMgbYnenAelIGgát;EdlbgðajenAkñúgCYrQrTImYyrbs;m:aRTIs. !$>%> ma:RTIsPaBrwgRkajsMrab; truss (Truss stiffness matrix) eRkayeBlbegáItm:aRTIsPaBrwgRkajsRmab;Ggát;enAkñúgkUGredaensklrYcehIy eKcaM)ac;pÁúMBUk vabBa©ÚlKñatamlMdab;d¾RtwmRtUv dUcenHeKnwgTTYl)anm:aRTIsPaBrwgRkaj K sRmab; truss TaMgmUl. dM- eNIrkarénkarpÁúMm:aRTIsGgát;TaMgenHGaRs½ynwgkarkMNt;GtþsBaØaNrbs;Ggát;enAkñúgm:aRTIsGgát;nImYy ². dUckarerobrab;enAkñúgkfaxNÐmun eKRtUvtMerobCYredk nigCYrQrrbs;m:aRTIsedayelxkUdbYn N x , N y , Fx , Fy EdleRbIedIm,IkMNt;GtþsBaØaN degree of freedom sklBIrEdlGacekItmanenARtg; cugnImYy²rbs;Ggát; ¬emIlsmIkar 14-16¦. m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúMnwgmanlMdab;esμInwg karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -472
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa elxkUdx<s;bMputEdl)ankMNt;eTAelI truss edaysartMNageGaycMnYn degree of freedom srub sRmab;eRKOgbgÁúM. enAeBleKpÁúMm:aRTIs k eKRtUvCMnYstYnImYy²enAkñúg k eTAkñúgCYredk nigCYrQrRtUvKña rbs;m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§ K . enAeBlGgát;BIr b¤Ggát;eRcIntP¢ab;KñaenARtg;tMNEtmYy eKRtUvdak;tYénm:aRTIsrbs;Ggát; k xøHeTAkñúgTItaMgdEdlrbs;m:aRTIs K . eKRtUvbUkbBa©ÚlKñatamlkçN³ nBVnþnUvtYEdlsßitenAkñúgTItaMgdUcKña. eyIgnwgyl;BImUlehtuenH)anc,as; RbsinebIeyIgdwgfatYnImYy² rbs;m:aRTIs k CaersIusþg;rbs;Ggát;Tb;Tl;nwgkmøaMgxageRkAEdlGnuvtþenARtg;cugrbs;va. tamviFIEbb enH karbUkbBa©ÚlKñanUversIusþg;tamTis x nigTis y enAeBlbegáItm:aRTIs K kMNt;nUversIusþg;srubrbs; tMNnImYy²EdlTb;Tl;nwgbMlas;TIÉktþatamTis x b¤tamTis y . ]TahrN_CaelxcMnYnBIrnwgbgðajBIviFIénkarpÁúMm:aRTIssRmab;Ggát;edIm,IbegáItCam:aRTIsPaBrwg RkajsRmab;eRKOgbgÁúM. eTaHbIvadMeNIrkarmanlkçN³sμúKsμajsRmab;karKNnaedayédbnþic Etvaman lkçN³gayRsYlCagsMrab;karbegáItkmμviFIenAelIkMuBüÚT½r. ]TahrN_ 14-1³ kMNt;m:aRTIsPaBrwgRkajsRmab; truss EdlmanGgát;BIrdUcbgðajenAkñúgrUbTI 14-7a. AE mantémøefr. dMeNaHRsay³ tamkarGegát ②manbgÁúMbMlas;TIEdlCaGBaØatcMnYnBIr cMENkÉ ① nig③RtUv)anTb; mineGaymanbMlas;TI. Cavi)ak eKRtUvkMNt;elxkUdeGaybgÁúMbMlas;TIenARtg;tMN ② dMbUgeK ehIy bnþedaytMN ③ nig ① ¬rUbTI14-7b¦. eKalrbs;RbB½n§kUGredaensklGacsßitenAcMNucNak¾)an. edIm,IPaBgayRsYl eyIgnwgeRCIserIstMN ② dUcbgðaj. eyIgGackMNt;elxerogeGayGgát;tam rebobNak¾)an ehIyeKRtUvKUssBaØaRBYjtambeNÞayGgát;TaMgBIredIm,IeGaydwgcugCit nigcugq¶ay bs;Ggát;nImYy². eKGacKNnakUsIunUsR)ab;Tis nigm:aRTIsPaBrwgRkajsRmab;Ggát;nImYy². Truss analysis using the stiffness method T.Chhay -473
  • Department of Civil Engineering NPIC Ggát;elx1³ edaysar ②CacugCit ehIy ③Cacugq¶ay enaHtamsmIkar14-5 nig14-6 eyIg)an 3−0 0−0 λx = =1 λy = =0 3 3 edayeRbIsmIkar 14-16 nigedayEcktYnImYy²CamYynwg L = 3m eyIg)an 1 2 3 4 ⎡ 0.333 0 − 0.333 0⎤ 1 ⎢ 0⎥ 2 k1 = AE ⎢ 0 0 0 ⎥ ⎢− 0.333 0 0.333 0⎥ 3 ⎢ ⎥ ⎣ 0 0 0 0⎦ 4 eyIgGacRtYtBinitükarKNnaedaycMNaMfa k1 Cam:aRTIssIuemRTI. cMNaMfa CYredk nigCYrQrenAkñúg m:aRTIs k1 RtUv)ankMNt;eday degree of freedom x, y enAcugCit Edlbnþedaycugq¶ay eBalKW 1, 2, 3 nig 4 erogKña sRmab;Ggát;elx1 ¬rUbTI 14-7b¦. eKeFVIEbbenHedIm,IkMNt;tYsRmab;karpÁúMenAkñúg m:aRTIs K . Ggát;elx 2³ edaysar ②CacugCit ehIy ①Cacugq¶ay enaHeyIg)an 3−0 4−0 λx = = 0.6 λy = = 0.8 5 3 dUcenHsmIkar 14-16 CamYynwg L = 5m køayCa 1 2 5 6 ⎡ 0.072 0.096 − 0.072 − 0.096⎤ 1 ⎢ 0.128 − 0.096 − 0.128⎥ 2 k 2 = AE ⎢ 0.096 ⎥ ⎢− 0.072 − 0.096 0.072 0.096 ⎥ 5 ⎢ ⎥ ⎣− 0.096 − 0.128 0.096 0.128 ⎦ 6 enATIenH eKkMNt;CYredk nigCYrQrCa1, 2, 5 nig 6 edaysarelxTaMgenHtMNageGay degree of freedom tamTis x nig y enARtg;cugCit nigcugq¶ayrbs;Ggát;elx 2 . m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§³ vaCam:aRTIsTMhM 6 × 6 edaysarvaman degree of freedom sRmab; truss cMnYn 6 ¬rUbTI 14-7b¦. eKRtUvbUktYEdlRtUvKñaénm:aRTIsTaMgBIrxagelIedIm,IbegáItCa m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúM. eKRbEhlCaRsYlemIlCagRbsinebIeKBnøatm:aRTIs k1 nig k 2 eGayeTACam:aRTIs 6 × 6 . enaHeK)an K = k1 + k 2 karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -474
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa 1 2 3 4 5 6 1 2 3 4 5 6 ⎡ 0.333 0 − 0.333 0 0 0⎤ 1 ⎡ 0.072 0.096 0 0 − 0.072 − 0.096⎤ 1 ⎢ 0 0 0 0 0 ⎥ 0⎥ 2 ⎢ 0.096 0.128 0 0 − 0.096 − 0.128⎥ 2 ⎢ ⎢ ⎥ K = AE ⎢− 0.333 0 0.333 0 0 0⎥ 3 + AE ⎢ 0 0 0 0 0 0 ⎥3 ⎢ ⎥ ⎢ ⎥ ⎢ 0 0 0 0 0 0⎥ 4 ⎢ 0 0 0 0 0 0 ⎥4 ⎢ 0 0 0 0 0 0⎥ 5 ⎢− 0.072 − 0.096 0 0 0.072 0.096 ⎥ 5 ⎢ ⎥ ⎢ ⎥ ⎢ 0 ⎣ 0 0 0 0 0⎥ 6 ⎦ ⎢− 0.096 − 0.128 ⎣ 0 0 0.096 0.128 ⎥ 6 ⎦ ⎡ 0.405 0.096 − 0.333 0 − 0.072 − 0.096⎤ ⎢ 0.096 0.128 0 0 − 0.096 − 0.128⎥ ⎢ ⎥ K = AE ⎢ − 0.333 0 0.333 0 0 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 0 0 0 ⎥ ⎢− 0.072 − 0.096 0 0 0.072 0.096 ⎥ ⎢ ⎥ ⎢− 0.096 − 0.128 ⎣ 0 0 0.096 0.128 ⎥ ⎦ RbsinebIeKeFVIdMeNIrkarenHCamYynwgkMuBüÚT½r CaTUeTAeKcab;epþImCamYynwgm:aRTIs K EdlmanFatuTaMg Gs;esμIsUnü bnÞab;mkFatuénm:aRTIsPaBrwgRkajsklsRmab;Ggát;Edl)anKNnarYcehIyRtUv)anCMnYs edaypÞal;eTAkñúgTItaMgFatuEdlRtUvKñaénm:aRTIs K . kareFVIEbbenHvaRbesIrCagkarbegáItm:aRTIsPaBrwg RkajsRmab;Ggát; rUcehIyrkSavaTuk bnÞab;mkeTIbpÁúMva. ]TahrN_ 14-2³ kMNt;m:aRTIsPaBrwgRkajsRmab; truss EdlmanGgát;BIrdUcbgðajenAkñúgrUbTI 14-8a. AE mantémøefr. dMeNaHRsay³ eTaHbICa truss Carcnasm<½n§minkMNt;edaysþaTicdWeRkTImYyk¾eday Etvanwgminbgðaj BIPaBlM)akkñúgkarTTYl)anm:aRTIsPaBrwgRkajsRmab;rcnasm<½n§eT. eKkMNt;elxerogeGaytMN nig Truss analysis using the stiffness method T.Chhay -475
  • Department of Civil Engineering NPIC Ggát;nImYy² ehIyeKbgðajcugCit nigcugq¶ayedayRBYjtambeNþayGgát;. dUcbgðajenAkñúgrUbTI 14- 8b dMbUgeKkMNt;elxerogkUdeGaybMlas;TIEdlminRtUv)anTb;. eKman degree of freedom cMnUn 8 dUcenH K RtUvCam:aRTIsTMhM 8 × 8 . edIm,IrkSaeGaykUGredaenrbs;tMNTaMgGs;viC¢man eKRtUveRCIserIs eKalrbs;kUGredaensklenARtg; ①. eyIgnwgGnuvtþsmIkar 14-5, 14-6 nig 14-16 eTAelIGgát; nImYy². Ggát;elx 1³ enATIenH L = 10m eyIg)an 10 − 0 0−0 λx = =1 λy = =0 10 10 1 2 6 5 ⎡ 0.1 0 − 0.1 0⎤ 1 ⎢ 0⎥ 2 k1 = AE ⎢ 0 0 0 ⎥ ⎢− 0.1 0 1 0⎥ 6 ⎢ ⎥ ⎣ 0 0 0 0⎦ 5 Ggát;elx 2³ enATIenH L = 10 2m dUcenH 10 − 0 10 − 0 λx = = 0.707 λy = = 0.707 10 2 10 2 1 2 7 8 ⎡ 0.035 0.035 − 0.035 − 0.035⎤ 1 ⎢ 0.035 0.035 − 0.035 − 0.035⎥ 2 k 2 = AE ⎢ ⎥ ⎢− 0.035 − 0.035 0.035 0.035 ⎥ 7 ⎢ ⎥ ⎣− 0.035 − 0.035 0.035 0.035 ⎦ 8 Ggát;elx 3³ enATIenH L = 10m dUcenH 0−0 10 − 0 λx = =0 λy = =1 10 10 1 2 3 4 ⎡0 0 0 0 ⎤1 ⎢0 0.1 0 − 0.1⎥ 2 k 3 = AE ⎢ ⎥ ⎢0 0 0 0 ⎥3 ⎢ ⎥ ⎣0 − 0.1 0 0.1 ⎦ 4 Ggát;elx 4³ enATIenH L = 10m eyIg)an 10 − 0 0−0 λx = =1 λy = =0 10 10 3 4 7 8 ⎡ 0.1 0 − 0.1 0⎤ 3 ⎢ 0⎥ 4 k 4 = AE ⎢ 0 0 0 ⎥ ⎢− 0.1 0 1 0⎥ 7 ⎢ ⎥ ⎣ 0 0 0 0⎦ 8 karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -476
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa Ggát;elx 5³ enATIenH L = 10 2m dUcenH 10 − 0 0 − 10 λx = = 0.707 λy = = −0.707 10 2 10 2 3 4 6 5 ⎡ 0.035 − 0.035 − 0.035 0.035 ⎤ 3 ⎢ 0.035 − 0.035⎥ 4 k 5 = AE ⎢− 0.035 0.035 ⎥ ⎢− 0.035 0.035 0.035 − 0.035⎥ 6 ⎢ ⎥ ⎣ 0.035 − 0.035 − 0.035 0.035 ⎦ 5 Ggát;elx 3³ enATIenH L = 10m dUcenH 0−0 10 − 0 λx = =0 λy = =1 10 10 6 5 7 8 ⎡0 0 0 0 ⎤6 ⎢0 0.1 0 − 0.1⎥ 5 k 6 = AE ⎢ ⎥ ⎢0 0 0 0 ⎥7 ⎢ ⎥ ⎣0 − 0.1 0 0.1 ⎦ 8 m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§³ eKGacpÁúMm:aRTIsTaMg 6 edIm,IbegáItm:aRTIsTMhM 8 × 8 edaykarbUk bBa©ÚlFatuEdlRtUvKña. ]TahrN_ edaysar (k11 )1 = AE (0.1) / (k11 )2 = AE (0.035) / (k11 )3 = (k11 )4 = (k11 )5 = (k11 )6 = 0 enaH K11 = AE (0.1 + 0.035) = AE (0.135) . dUcenHlT§plcugeRkayKW 1 3 2 4 5 6 7 8 ⎡ 0.135 0 0.0350 0 − 0.1 − 0.035 − 0.035⎤ 1 ⎢ 0.035 0 − 0.1 0.135 0 0 − 0.035 − 0.035⎥ 2 ⎢ ⎥ ⎢ 0 0.135 − 0.035 0.035 − 0.035 − 0.1 0 0 ⎥3 ⎢ ⎥ K = AE ⎢ 0 − 0.035 0.135 − 0.035 0.035 − 0.1 0 0 ⎥4 ⎢ 0 0 0.035 − 0.035 0.135 − 0.035 0 − 0.1 ⎥ 5 ⎢ ⎥ ⎢ − 0.1 0 − 0.035 0.035 − 0.035 0.135 0 0 ⎥6 ⎢− 0.035 − 0.035 − 0.1 0 0 0 0.135 0.035 ⎥ 7 ⎢ ⎥ ⎢− 0.035 − 0.035 ⎣ 0 0 − 0.1 0 0.135 0.135 ⎥ 8 ⎦ !$>^> karGnuvtþénviFIPaBrwgRkajsRmab;karviPaK truss (Application of the stiffness method for truss analysis) eRkayeBlbegáItm:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúMrYcehIy eKGaceFVIeGaybgÁúMkmøaMgskl Q EdlmanGMeBIenAelI truss manTMnak;TMngeTAnwgbMlas;TIskl D rbs;vaedayeRbI Q = KD (14-17) Truss analysis using the stiffness method T.Chhay -477
  • Department of Civil Engineering NPIC eKGacsMKal;smIkarenHCasmIkarPaBrwgRkajsRmab;rcnasm<½n§ (structure stiffness equation). edaysareyIgEtgEtkMNt;elxkUdtUcbMputedIm,IsmÁal; degree of freedom EdlminRtUv)anTb; dUcenH vaGnuBaØateGayeyIgGacbMEbksmIkarenHkñúgTRmg;dUcxageRkam ³ * ⎡Qk ⎤ ⎡ K11 K12 ⎤ ⎡ Du ⎤ ⎢Q ⎥ = ⎢ K ⎥⎢ ⎥ (14-18) ⎣ u ⎦ ⎣ 21 K 22 ⎦ ⎣ Dk ⎦ Edl bnÞúkxageRkA nigbMlas;TIEdleKsÁal;. enATIenH bnÞúkmanGMeBIenAelI truss CaEpñk Qk , Dk = mYyéncMeNaT ehIyCaTUeTAbMlas;TIesμIsUnüedaysarTMrRtUv)anTb; dUcCaTMrsnøak; b¤TMrkl;. Qu , Du = bnÞúk nigbMlas;TIEdlCaGBaØat. enATIenH bnÞúkCakmøaMgRbtikmμTMrEdleKminsÁal; ehIybMlas;TIKWsßitenARtg;tMNEdlminRtUv)anTb;tamTisNamYyeT. K = m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§ EdlRtUv)anbMEbkedIm,IeGaycuHsRmugCamYynwg karbMEbkrbs; Q nig D . edayBnøatsmIkar 14-18 eyIg)an Qk = K11 Du + K12 Dk (14-19) Qu = K 21 Du + K 22 Dk (14-20) CaTUeTA Dk = 0 edaysarTMrminmanbMlas;TI. RbsinebIvaEbbenHEmn enaHsmIkar 14-19 køayCa Qk = K11 Du edaysarFatuenAkñúgm:aRTIs K11 CaersIusþg;srubenARtg;tMN truss edIm,ITb;Tl;bMlas;TIÉktþatamTI x b¤ y enaHsmIkarxagelICakarRbmUlpþúMnUvsmIkarlMnwgkmøaMgEdlGnuvtþeTAelItMNEdlbnÞúkxageRkA esμIsUnü b¤mantémøEdlsÁal; (Qk ) . edayedaHRsayrk Du eyIg)an Du = [K11 ]−1 Qk (14-21) BIsmIkarenH eyIgGacTTYl)andMeNaHRsayedaypÞal;sRmab;bMlas;TIEdlCaGBaØatTaMgGs; bnÞab;mk edayeRbIsmIkar 14-20 CamYynwg Dk = 0 eyIg)an Qu = K 21 Du (14-22) BIsmIkarxagelI eyIgGackMNt;kmøaMgRbtikmμTMr. eKGackMNt;kmøaMgkñúgrbs;Ggát;edayeRbIsmIkar 14-13 eBalKW q = k ' TD edayBnøatsmIkarenH eyIg)an * eyIgnwg)aneXIjBIviFIbMEbkenHenAkñúg]TahrN_xageRkam. karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -478
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ⎡ DN x ⎤ ⎢ ⎥ ⎡q N ⎤ AE ⎡ 1 − 1⎤ ⎡λ x λ y 0 0 ⎤ ⎢ D Ny ⎥ ⎢ q ⎥ = L ⎢− 1 1 ⎥ ⎢ 0 0 λ λ y ⎥ ⎢ DFx ⎥ ⎣ F⎦ ⎣ ⎦⎣ x ⎦⎢ ⎥ ⎢ DFy ⎥ ⎣ ⎦ edaysar q N = −q F edIm,IsßanPaBlMnwg dUcenHeKRtUvkarkMNt;EtkmøaMgmYyb:ueNÑaHkñúgcMeNamkmøaMg TaMgBIr. enATIenH eyIgnwgkMNt; q F kmøaMgEdlGnuvtþkmøaMgTajeTAelIGgát; ¬rUbTI 14-6b¦. ⎡ DN x ⎤ ⎢D ⎥ qF = AE L [ − λx − λ y λx ] λy ⎢ y ⎥ N ⎢ DFx ⎥ (14-23) ⎢ ⎥ ⎢ D Fy ⎥ ⎣ ⎦ RbsinebIlT§plEdl)anBIkarKNnamantémøGviC¢man enaHGgát;rgkarsgát;. dMeNIrkarkñúgkarviPaK (Procedure for analysis) xageRkamCaCMhanEdlpþl;nUvmeFüa)aysRmab;kMNt;bMlas;TI nigkmøaMgRbtikmμTMrEdlCa GBaØatsRmab; truss edayeRbIviFIPaBrwgRkaj. kareFVIkMNt;sMKal;³ begáItRbB½n§kUGredaenskl x, y . CaTUeTAeKalrbs;vasßitenARtg;tMNNaEdleFVIeGay kUGredaensRmab;tMNdéTeTotviC¢man. kMNt;elxerogeGaytMN nigGgát;nImYy² ehIykMNt;cugCit nigcugq¶ayrbs;Ggát;nImYy² edayeRbITisedArbs;sBaØaRBYj Edlk,alRBYjeq<aHeTArkcugq¶ay. kMNt;elxkUdBIrenARtg;tMNnImYy² edayeRbIelxtUcbMputsRmab;sMKal; degree of freedom EdlminmanrgkarTb; cMENkelxFMbMputsRmab;sMKal; degree of freedom EdlmankarTb;. begáIt Dk nig Qk . m:aRTIsPaBrwgRkajsRmab;eRKOgbgÁúM³ sRmab;Ggát;nImYy² kMNt; λ x nig λ y ehIykMNt;m:aRTIsPaBrwgRkajsRmab;Ggát;edayeRbI smIkar 14-16. pÁúMm:aRTIsTaMgenHedIm,IbegáItm:aRTIsPaBrwgRkajsRmab; truss TaMgmUl dUckarBnül;enAkñúg kfaxNÐ 14-5. edaykarRtYtBinitükarKNnaedayEpñk m:aRTIsPaBrwgRkajsRmab;Ggát; nig m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§RtUvEtCam:aRTIssIuemRTI. bMlas;TI nigbnÞúk³ Truss analysis using the stiffness method T.Chhay -479
  • Department of Civil Engineering NPIC bMEbkm:aRTIsPaBrwgRkajsRmab;rcnasm<½n§ dUcbgðajenAkñúgsmIkar 14-18. kMNt;bMlas;TIrbs;tMNEdlCaGBaØat Du edayeRbIsmIkar 14-21 kmøaMgRbtikmμTMr Qu eday eRbIsmIkar 14-22 ehIykmøaMgkñúgrbs;Ggát;nImYy² q F edayeRbIsmIkar 14-23. ]TahrN_ 14-3³ kMNt;kmøaMgkñúgrbs;Ggát;én truss EdlmanGgát;BIrdUcbgðajenAkñúgrUbTI 14-9a. AE mantémøefr. dMeNaHRsay³ kareFVIkMNt;smÁal;³ eKal x, y nigkarkMNt;elxerogrbs;tMN nigGgát;RtUv)anbgðajenAkñúgrUbTI 14-9b. dUcKña cugCit nigcugq¶ayRtUv)anbgðajkMNt;edaysBaØaRBYj ehIyeKeRbIelxkUdenARtg;tMN nImYy². tamkarGegáteyIgeXIjfabMlas;TI D3 = D4 = D5 = D6 = 0 . ehIybnÞúkxageRkAEdl eyIgsÁal;KW Q1 = 0, Q2 = −2kN . dUcenH ⎡0 ⎤ 3 ⎢0 ⎥ 4 ⎡ 0 ⎤1 Dk = ⎢ ⎥ Qk = ⎢ ⎥ ⎢0 ⎥ 5 ⎣ − 2⎦ 2 ⎢ ⎥ ⎣0 ⎦ 6 m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§³ edayeRbIkareFVIkMNt;smÁal;dUcKña eyIgGacbegáItm:aRTIsPaBrwg RkajsRmab;rcnasm<½n§dUcbgðajenAkñúg]TahrN_ 14-1. bMlas;TI nigbnÞúk³ edaysresrsmIkar 14-17 ¬ Q = KD ¦ sRmab; truss eyIg)an karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -480
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ⎡0 ⎤ ⎡ 0.405 0.096 − 0.333 0 − 0.072 − 0.096⎤ ⎡ D1 ⎤ ⎢ − 2⎥ ⎢ 0.096 0.128 0 0 − 0.096 − 0.128⎥ ⎢ D2 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ Q3 ⎥ ⎢ − 0.333 0 0.333 0 0 0 ⎥⎢ 0 ⎥ ⎢ ⎥ = AE ⎢ ⎥⎢ ⎥ (1) ⎢ Q4 ⎥ ⎢ 0 0 0 0 0 0 ⎥⎢ 0 ⎥ ⎢ Q5 ⎥ ⎢− 0.072 − 0.096 0 0 0.072 0.096 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q6 ⎥ ⎣ ⎦ ⎢− 0.096 − 0.128 ⎣ 0 0 0.096 0.128 ⎥ ⎢ 0 ⎥ ⎦⎣ ⎦ BIsmIkarenH eyIgGackMNt; K11 dUcenHeyIgGackMNt; Du . eyIgeXIjfaplKuNm:aRTIs ¬dUc smIkar 14-19¦ eyIg)an ⎡0 ⎤ ⎡0.405 0.096⎤ ⎡ D1 ⎤ ⎡0⎤ ⎢− 2⎥ = AE ⎢0.096 0.128⎥ ⎢ D ⎥ + ⎢0⎥ ⎣ ⎦ ⎣ ⎦⎣ 2 ⎦ ⎣ ⎦ enATIenH eyIgGacedaHRsayy:agRsYledayBnøatedaypÞal; 0 = AE (0.405 D1 + 0.096 D2 ) − 2 = AE (0.096 D1 + 0.128 D2 ) tamrUbviTüa smIkarTaMgenHtMNageGay ∑ Fx = 0 nig ∑ Fy = 0 EdlGnuvtþenARtg;tMN ②. eday edaHRsay eyIg)an 4.505 − 19.003 D1 = D2 = AE AE tamkarGegátrUbTI 14-9b eKrMBwgfatMN ②nwgpøas;TIeTAsþaM nigcuHeRkamdUcbgðajedaysBaØabUk nig sBaØadkéncemøIyenH edayeRbIlT§plTaMgenH eKGacTTYl)ankmøaMgRbtikmμTMrBIsmIkar (1) EdlRtUv)ansresrkñúgTRmg;én smIkar 14-20 ¬b¤smIkar 14-22¦ Ca ⎡Q3 ⎤ ⎡ − 0.333 0 ⎤ ⎡0 ⎤ ⎢Q ⎥ ⎢ 0 ⎥ 0 ⎥ 1 ⎡ 4.505 ⎤ ⎢0⎥ ⎢ 4 ⎥ = AE ⎢ +⎢ ⎥ ⎢Q5 ⎥ ⎢− 0.072 − 0.096⎥ AE ⎢− 19.003⎥ ⎢0⎥ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣Q6 ⎦ ⎣− 0.096 − 0.128⎦ ⎣0 ⎦ edayBnøat nigedaHRsaykmøaMgRbtikmμ Q3 = −0.333(4.505) = −1.5kN Q4 = 0 Q5 = −0.072(4.505) − 0.096(− 19.003) = 1.5kN Q6 = −0.096(4.505) − 0.128(− 19.003) = 2.0kN eKGacKNnakmøaMgenAkñúgGgát;nImYy²BIsmIkar 14-23. edayeRbITinñn½ysRmab; λ x nig λ y enAkñúg smIkar 14-1 eyIg)an Truss analysis using the stiffness method T.Chhay -481
  • Department of Civil Engineering NPIC Ggát;elx ! ³ λ x = 1, λ y = 0, L = 3m ⎡ 4.505 ⎤ 1 ⎢ ⎥ AE 1 2 3 4 1 ⎢− 19.003⎥ 2 q1 = 3 [− 1 0 1 0] AE ⎢ 0 ⎥ 3 ⎢ ⎥ ⎣ 0 ⎦4 = [− 4.505] = −1.5kN 1 3 Ggát;elx @ ³ λ x = 0.6, λ y = 0.8, L = 5m ⎡ 4.505 ⎤ 1 AE 1 2 5 6 1 ⎢− 19.003⎥ 2 ⎢ ⎥ q2 = 5 [− 0.6 − 0.8 0.6 0.8] AE ⎢ 0 ⎥ 5 ⎢ ⎥ ⎣ 0 ⎦6 = [− 0.6(4.505) − 0.8(− 19.003)] = 2.5kN 1 5 Cak;EsþgeKGacepÞógpÞat;cemøIyTaMgenHedaysmIkarlMnwgEdlGnuvtþenARtg;tMN ②. ]TahrN_ 14-4³ kMNt;kmøaMgRbtikmμTMr nigkmøaMgkñúgrbs;Ggát;elx@ én truss dUcbgðajenAkñúgrUbTI 14-10a. AE mantémøefr. dMeNaHRsay³ kareFVIkMNt;smÁal;³tMN nigGgát;RtUv)ankMNt;elxerog ehIyeKalrbs;G½kS x, y RtUv)anbegáItenA Rtg;tMN ① ¬rUbTI 14-10b¦. ehIysBaØaRBYjRtUv)aneKeRbIedIm,IbgðajcugCit nigcugq¶ayrbs;Ggát; nImYy². edayeRbIelxkUd EdlelxtUcbMputtMNageGay degree of freedom EdlmanrgkarTb; ¬rUb TI 14-16b¦ eyIg)an karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -482
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ⎡ 0 ⎤1 ⎢ 0 ⎥2 ⎡0 ⎤ 6 ⎢ ⎥ D k = ⎢0 ⎥ 7 ⎢ ⎥ Qk = ⎢ 2 ⎥ 3 ⎢ ⎥ ⎢0 ⎥ 8 ⎣ ⎦ ⎢ − 4⎥ 4 ⎢ 0 ⎥5 ⎣ ⎦ m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§³ m:aRTIsenHRtUv)ankMNt;enAkñúg]TahrN_ 14-2 edayeRbIkar eFVIkMNt;smÁal;dUcKñanwgkarbgðajenAkñúg]TahrN_ 14-10b. bMlas;TI nigbnÞúk³ sRmab;cMeNaTenH Q = KD KW ⎡0⎤ ⎡ 0.135 0.035 0 0 0 − 0.1 − 0.035 − 0.035⎤ ⎡ D1 ⎤ ⎢0⎥ ⎢ 0.035 0.135 0 − 0 .1 0 0 − 0.035 − 0.035⎥ ⎢ D2 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ 2⎥ ⎢ 0 0 0.135 − 0.035 0.035 − 0.035 − 0.1 0 ⎥ ⎢ D3 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢− 4⎥ = AE ⎢ 0 − 0.1 − 0.035 0.135 − 0.035 0.035 0 0 ⎥ ⎢ D4 ⎥ (1) ⎢0⎥ ⎢ 0 0 0.035 − 0.035 0.135 − 0.035 0 − 0.1 ⎥ ⎢ D5 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q6 ⎥ ⎢ − 0 .1 0 − 0.035 0.035 − 0.035 0.135 0 0 ⎥⎢ 0 ⎥ ⎢Q ⎥ ⎢− 0.035 − 0.035 − 0.1 0 0 0 0.135 0.035 ⎥ ⎢ 0 ⎥ ⎢ 7⎥ ⎢ ⎥⎢ ⎥ ⎢ Q8 ⎥ ⎣ ⎦ ⎢− 0.035 − 0.035 ⎣ 0 0 − 0 .1 0 0.035 0.135 ⎥ ⎢ 0 ⎥ ⎦⎣ ⎦ edayeFVIplKuNdUckarsresrsmIkar 14-18 edIm,IedaHRsaybMlas;TI eyIg)an ⎡0 ⎤ ⎡0.135 0.035 0 0 0 ⎤ ⎡ D1 ⎤ ⎡0⎤ ⎢0 ⎥ ⎢ ⎥ ⎢0.035 0.135 ⎢ 0 − 0 .1 0 ⎥ ⎢ D2 ⎥ ⎢0 ⎥ ⎥⎢ ⎥ ⎢ ⎥ ⎢ 2 ⎥ = AE ⎢ 0 0 0.135 − 0.035 0.035 ⎥ ⎢ D3 ⎥ + ⎢0⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ − 4⎥ ⎢ 0 − 0.1 − 0.035 0.135 − 0.035⎥ ⎢ D4 ⎥ ⎢0⎥ ⎢0 ⎥ ⎣ ⎦ ⎢ 0 ⎣ 0 0.035 − 0.035 0.135 ⎥ ⎢ D5 ⎥ ⎢0⎥ ⎦⎣ ⎦ ⎣ ⎦ edayBnøat nigedayedaHRsaysmIkarsRmab;bMlas;TI eyIg)an ⎡ D1 ⎤ ⎡ 17.94 ⎤ ⎢D ⎥ ⎢− 69.20⎥ ⎢ 2⎥ 1 ⎢ ⎥ ⎢ D3 ⎥ = ⎢ − 2.06 ⎥ ⎢ ⎥ AE ⎢ ⎥ ⎢ D4 ⎥ ⎢ − 87.14 ⎥ ⎢ D5 ⎥ ⎣ ⎦ ⎢− 22.06⎥ ⎣ ⎦ edaybegáItsmIkar 14-20 BIsmIkar (1) EdleRbIlT§plEdl)anKNna eyIg)an ⎡ 17.94 ⎤ ⎢ − 69.20⎥ 0 ⎡Q6 ⎤ ⎡ − 0.1 0 − 0.035 0.035 − 0.035⎤ ⎥ ⎡ ⎤ ⎢Q ⎥ = AE ⎢− 0.035 − 0.035 − 0.1 1 ⎢ ⎢ 7⎥ ⎢ 0 0 ⎥ ⎥ ⎢ − 2.06 ⎥ + ⎢0⎥ AE ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣Q8 ⎦ ⎢− 0.035 − 0.035 ⎣ 0 0 − 0.1 ⎥ ⎦ ⎢ − 87.14 ⎥ ⎢0⎥ ⎣ ⎦ ⎢− 22.06⎥ ⎣ ⎦ edayBnøat nigKNnakmøaMgRbtikmμTMr eyIg)an Truss analysis using the stiffness method T.Chhay -483
  • Department of Civil Engineering NPIC Q6 = −4.0kN Q7 = 2.0kN Q8 = 4.0kN sBaØadksRmab; Q6 bgðajfakmøaMgRbtikmμrbs;TMrkl;eFVIGMeBIkñúgTis x GviC¢man. eKGackMNt;kmøaMg enAkñúgGgát;elx@ BIsmIkar 14-23 EdlBIsmIkar 14-2 λ x = 0.707, λ y = 0.707, L = 10 2m dUcenH ⎡ 17.94 ⎤ ⎢− 69.20⎥ q2 = AE [− 0.707 − 0.707 0.707 0.707] 1 ⎢ ⎥ 10 2 AE ⎢ 0 ⎥ ⎢ ⎥ ⎣ 0 ⎦ = 2.56kN ]TahrN_ 14-5³ kMNt;kmøaMgkñúgrbs;Ggát;elx@ énrcnasm<½n§dUcbgðajenAkñúgrUbTI 14-11a. Rb sinebIenARtg;tMN① mansMrut 25mm . yk AE = 8(103 )kN . dMeNaHRsay³ kareFVIkMNt;smÁal;³edIm,IPaBgayRsYl eKRtUvbegáIteKalrbs;kUGredaensklenARtg;tMN ③ dUc bgðajenAkñúgrUbTI 14-11b ehIytamFmμta eKeRbIelxkUdtUcCageKedIm,ItMNageGay degree of freedom EdlminmankarTb;. dUcenH ⎡ 0 ⎤3 ⎢− 0.025⎥ 4 ⎢ ⎥ ⎢ 0 ⎥5 ⎡0 ⎤ 1 Dk = ⎢ ⎥ Qk = ⎢ ⎥ ⎢ 0 ⎥6 ⎣0 ⎦ 2 ⎢ 0 ⎥7 ⎢ ⎥ ⎢ 0 ⎥8 ⎣ ⎦ karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -484
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§³ edayeRbIsmIkar 14-16 eyIg)an Ggát;elx !³ λ x = 0 / λ y = 1 / L = 3m dUcenH 3 4 1 2 ⎡0 0 0 0⎤3 ⎢0 0.333 0 − 0.333⎥ 4 k1 = AE ⎢ ⎥ ⎢0 0 0 0 ⎥1 ⎢ ⎥ ⎣0 − 0.333 0 0.333 ⎦ 2 Ggát;elx @³ λ x = −0.8, λ y = −0.6, L = 5m dUcenH 1 2 5 6 ⎡ 0.128 0.096 − 0.128 − 0.096⎤ 1 ⎢ 0.096 0.072 − 0.096 − 0.072⎥ 2 k 2 = AE ⎢ ⎥ ⎢ − 0.128 − 0.096 0.128 0.096 ⎥ 5 ⎢ ⎥ ⎣− 0.096 − 0.072 0.096 0.072 ⎦ 6 Ggát;elx #³ λ x = 1, λ y = 0, L = 4m dUcenH 7 8 1 2 ⎡ 0.25 0 − 0.25 0⎤ 7 ⎢ 0⎥ 8 k 3 = AE ⎢ 0 0 0 ⎥ ⎢− 0.25 0 0.25 0⎥ 1 ⎢ ⎥ ⎣ 0 0 0 0⎦ 2 edaypÁúMm:aRTIsTaMgenH m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§køayCa 1 2 3 4 5 6 7 8 ⎡ 0.378 0.096 0 0 − 0.128 − 0.096 − 0.25 0⎤ 1 ⎢ 0.096 0.405 0 − 0.333 − 0.096 − 0.072 0 0⎥ 2 ⎢ ⎥ ⎢ 0 0 0 0 0 0 0 0⎥ 3 ⎢ ⎥ K =⎢ 0 − 0.333 0 0.333 0 0 0 0⎥ 4 ⎢ − 0.128 − 0.096 0 0 0.128 0.096 0 0⎥ 5 ⎢ ⎥ ⎢− 0.096 0.072 0 0 0.096 0.072 0 0⎥ 6 ⎢ − 0.25 0 0 0 0 0 0.25 0⎥ 7 ⎢ ⎥ ⎢ 0 ⎣ 0 0 0 0 0 0 0⎥ 8 ⎦ bMlas;TI nigbnÞúk³ enATIenH Q = KD eyIg)an Truss analysis using the stiffness method T.Chhay -485
  • Department of Civil Engineering NPIC ⎡0⎤ ⎡ 0.378 0.096 0 0 − 0.128 − 0.096 − 0.25 0⎤ ⎡ D1 ⎤ ⎢0⎥ ⎢ 0.096 0.405 0 − 0.333 − 0.096 − 0.072 0 0 ⎥ ⎢ D2 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q3 ⎥ ⎢ 0 0 0 0 0 0 0 0⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q4 ⎥ = AE ⎢ 0 − 0.333 0 0.333 0 0 0 0⎥ ⎢− 0.025⎥ ⎢Q5 ⎥ ⎢ − 0.128 − 0.096 0 0 0.128 0.096 0 0⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q6 ⎥ ⎢− 0.096 − 0.072 0 0 0.096 0.072 0 0⎥ ⎢ 0 ⎥ ⎢Q ⎥ ⎢ − 0.25 0 0 0 0 0 0.25 0⎥ ⎢ 0 ⎥ ⎢ 7⎥ ⎢ ⎥⎢ ⎥ ⎢Q8 ⎥ ⎣ ⎦ ⎢ 0 ⎣ 0 0 0 0 0 0 0⎥ ⎢ 0 ⎥ ⎦⎣ ⎦ edayedaHRsaysRmab;bMlas;TI ¬smIkar 14-19¦ eyIg)an ⎡ 0 ⎤ ⎢− 0.025⎥ ⎢ ⎥ ⎡0 ⎤ ⎡0.378 0.096⎤ ⎡ D1 ⎤ ⎡0 0 − 0.128 − 0.096 − 0.25 0⎤ ⎢ 0 ⎥ ⎢0⎥ = AE ⎢0.096 0.405⎥ ⎢ D ⎥ + AE ⎢0 − 0.333 − 0.096 − 0.072 ⎢ 0⎥ ⎢ 0 ⎥ ⎥ ⎣ ⎦ ⎣ ⎦⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎣ ⎦ EdleyIgTTYl)an 0 = AE [(0.378 D1 + 0.096 D2 ) + 0] 0 = AE [(0.096 D1 + 0.405 D2 ) + 0.00833] edayedaHRsayRbB½n§smIkarenH eyIg)an D1 = 0.00556m D2 = −0.021875m eTaHbICaeKminRtUvkarKNnakmøaMgRbtikmμTMrk¾eday EtRbsinebIcaM)ac;eKRtUvKNnavaBIkarBnøatEdl kMNt;edaysmIkar 14-20. edayeRbIsmIkar 14-23 edIm,IkMNt;kmøaMgenAkñúgGgát;elx @ eyIg)an Ggát;elx @³ λ x = −0.8, λ y = −0.6, L = 5m, AE = 8(103 )kN dUcenH ⎡ 0.00556 ⎤ q2 = ( ) 8 10 3 [0.8 0.6 − 0.8 − 0.6]⎢ ⎢− 0.02187 ⎥ ⎥ 5 ⎢ 0 ⎥ ⎢ ⎥ ⎣ 0 ⎦ = 8 10( ) 3 (0.00444 − 0.0131) = −13.9kN 5 edayeRbIdMeNIrkarKNnadUcKña bgðajfakmøaMgenAkñúgGgát;elx ! KW q1 = 8.34kN ehIykmøaMgenAkñúg Ggát;elx # KW q3 = 11.1kN . lT§plRtUv)anbgðajenAkñúgdüaRkamGgÁesrIrbs;tMN ② ¬rUbTI 14- 11c¦ EdleKGacepÞógpÞat;edaysmIkarlMnwg. karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -486
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa !$>&> kUGredaenrbs; node (Nodal coordinates) enAeBlTMrkl;rbs; truss sßitenAelIbøg;eRTt ehIyeKGackMNt;PaBdabsUnüenARtg;TMreday eRbIRbB½n§kUGredaenskltamTisedk nigtamTisQrEtmYy. ]TahrN_ eKman truss enAkñúgrUbTI 14- 12a. eKRtUvkMNt;lkçxNÐénbMlas;TIsUnüenARtg;tMN ① tambeNþayG½kS y' ' ehIyedaysarTMr kl;Gacpøas;TItambeNþayG½kS x' ' dUcenH node enHRtUvmanbgÁúMbMlas;TItamG½kSkUGredaen x, y . sRmab;mUlehtuenH eyIgminGacrYmbBa©ÚllkçxNÐbMlas;TIsUnüenARtg; node enH enAeBlsresr smIkarPaBrwgRkajsklsRmab; truss edayeRbIG½kS x, y edaymineFVIeGaymankarEktRmUvdMeNIr karviPaKm:aRTIs. edIm,IedaHRsaycMeNaTenH eyIgGacbBa©ÚlvaeTAkñgkarviPaKkMuBüÚT½redayRsYl eyIgnwgeRbIsMnMu ú kUGredaenrbs; node x' ' , y' ' enARtg;TMreRTt. eKRtUveFVIeGayG½kSTaMgenHmanTItaMgy:agNaedIm,I eGaykmøaMgRbtikmμTMr nigbMlas;TIrbs;TMrpøas;TItambeNþayG½kSkUGredaennImYy² ¬rUbTI 14-12a¦. edIm,IKNnasmIkarPaBrwgRkajsklsRmab; truss enaHeKcaM)ac;begáItm:aRTIsbMElgkmøaMg nigma:RTIs bMElgbMlas;TIsRmab;Ggát;EdltP¢ab;eTAnwgTMrenaH dUcenHeKGaceFVIplbUklT§plTaMgenHenAkñúgRbB½n§ kUGredaenskl x, y dUcKña. edIm,IbgðajBIrebobénkarGnuvtþ eyIgRtUvBicarNaGgát; truss elx! enA Truss analysis using the stiffness method T.Chhay -487
  • Department of Civil Engineering NPIC kñúgrUbTI 14-12b EdlmanRbB½n§kUGredaenskl x, y enARtg;cugCit N ehIyRbB½n§kUGredaenrbs; node x' ' , y ' ' enARtg;cugq¶ay F . enAeBlbMlas;TI D ekIteLIg dUcenHBYkvamanbgÁúMtambeNþayG½kS nImYy²dUcbgðajenAkñúgrUbTI 14-12c enaHbMlas;TItamTis x tambeNþaycugGgát;nImYy²køayCa d N = D N x cos θ x + D N y cos θ y d F = DFx '' cos θ x '' + DFy '' cos θ y '' eKGacsresrsmIkarTaMgenHenAkñúgTRmg;m:aRTIs ⎡ DN x ⎤ ⎢ ⎥ ⎡ d N ⎤ ⎡λ x λ y 0 0 ⎤ ⎢ DN y ⎥ ⎢d ⎥ = ⎢ 0 0 λ λ y '' ⎥ ⎢ DFx '' ⎥ ⎣ F⎦ ⎣ x '' ⎦⎢ ⎥ ⎢ D Fy '' ⎥ ⎣ ⎦ dUcKña kmøaMg q enARtg;cugCit nigcugq¶ayrbs;Ggát; ¬rUbTI 14-12d¦ manbgÁúM Q tambeNþayG½kSskl Q N x = q N cos θ x Q N y = q N cos θ y Q Fx '' = q F cos θ x '' Q Fy '' = q F cos θ y '' EdleKGacsresrCa ⎡ Q N x ⎤ ⎡λ x 0 ⎤ ⎢Q ⎥ ⎢ ⎥ ⎢ N y ⎥ = ⎢λ y 0 ⎥ ⎡ q N ⎤ ⎢Q Fx '' ⎥ ⎢ 0 λ x '' ⎥ ⎢ q F ⎥ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢Q Fy '' ⎥ ⎢ 0 λ y '' ⎥ ⎣ ⎦ ⎣ ⎦ eKeRbIm:aRTIsbMElgbMlas;TI nigm:aRTIskmøaMgenAkñúgsmIkarxagelIedIm,IbegáItm:aRTIsPaBrwgRkaj sRmab;Ggát;enAkñúgsßanPaBenH. edayGnuvtþsmIkar 14-15 eyIg)an k = T T k 'T ⎡λ x 0 ⎤ ⎢λ ⎥ k= ⎢ y 0 ⎥ AE ⎡ 1 − 1⎤ ⎡λ x λ y 0 0 ⎤ ⎢− 1 1 ⎥ ⎢ 0 0 λ ⎢ 0 λ x '' ⎥ L ⎣ ⎥ ⎦⎣ x '' λ y '' ⎦ ⎢ ⎥ ⎢ 0 λ y '' ⎥ ⎣ ⎦ edayKNnam:aRTIsxagelI eyIgTTYl)an ⎡ λ2 x λ x λ y − λ x λ x '' − λ x λ y '' ⎤ ⎢ ⎥ AE ⎢ λ x λ y λ2 y − λ y λ x '' − λ y λ y '' ⎥ k= (14-24) L ⎢ − λ x λ x '' − λ y λ x '' λ2 '' λ x '' λ y '' ⎥ ⎢ x ⎥ ⎢− λ x λ y '' − λ y λ y '' λ x '' λ y '' λ2 '' ⎥ ⎣ y ⎦ bnÞab;mkeKGaceRbIm:aRTIsPaBrwgRkajsRmab;Ggát;nImYy²EdlRtUvtP¢ab;eTAnwgTMrkl;EdleRTt ehIy dMeNIrkarpÁúMm:aRTIsedIm,IbegáItm:aRTIsPaBrwgRkajrcnasm<½n§GnuvtþtamdMeNIrkarbTdæan. ]TahrN_xag karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -488
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa eRkambgðajBIkarGnuvtþrbs;va. ]TahrN_ 14-6³ kMNt;kmøaMgRbtikmμTMrsRmab; truss dUcbgðajenAkñúgrUbTI 14-13a. dMeNaHRsay³ kareFVIkMNt;smÁal;³edaysarTMrkl;enARtg; ② sßitenAelIbøg;eRTt eyIgRtUveRbIkUGredaenrbs; node enARtg; node enH. eKRtUvkMNt;elxerogeGaytMN nigGgát; ehIybegáItkUGredaen x, y enARtg; node ③ ¬rUbTI 14-13b¦. cMNaMfa elxkUd # nig$ sßitenAtambeNþayG½kS x' ' , y ' ' edIm,IeRbIlkçxNÐ Edl D4 = 0 . m:aRTIsPaBrwgRkajsRmab;Ggát;³ eKRtUvbegáItm:aRTIsPaBrwgRkajsRmab;Ggát;elx ! nigelx @ eday eRbIsmIkar 14-24 edaysarGgát;TaMgenHmanelxkUdtamTisénG½kSskl nigG½kSrbs;kUd. eKRtUv kMNt;m:aRTIsPaBrwgRkajsRmab;Ggát;elx # tamrebobFmμta. Ggát;elx !³ rUbTI 14-13c/ λ x = 1, λ y = 0, λ x'' = 0.707, λ y'' = −0.707 Truss analysis using the stiffness method T.Chhay -489
  • Department of Civil Engineering NPIC 5 6 3 4 ⎡ 0.25 0 − 0.17675 0.17675⎤ 5 ⎢ 0 ⎥6 k1 = AE ⎢ 0 0 0 ⎥ ⎢− 0.17675 0 0.125 − 0.125 ⎥ 3 ⎢ ⎥ ⎣ 0.17675 0 − 0.125 0.125 ⎦ 4 Ggát;elx @³ rUbTI 14-13d/ λ x = 0, λ y = −1, λ x '' = −0.707, λ y '' = −0.707 1 2 3 4 ⎡ 0 0 0 0 ⎤1 ⎢0 0.333 − 0.2357 − 0.2357⎥ k 2 = AE ⎢ ⎥2 ⎢0 − 0.2357 0.1667 0.1667 ⎥ 3 ⎢ ⎥ ⎣0 − 0.2357 0.1667 0.1667 ⎦ 4 Ggát;elx #³ λ x = 0.8, λ y = 0.6 1 2 3 4 ⎡ 0.128 0.096 − 0.128 − 0.096⎤ 5 ⎢ 0.096 0.072 − 0.0.96 − 0.072⎥ 6 k 3 = AE ⎢ ⎥ ⎢− 0.128 − 0.096 0.128 0.096 ⎥ 1 ⎢ ⎥ ⎣− 0.096 − 0.072 0.0.96 0.072 ⎦ 2 m:aRTIsPaBrwgRkajsRmab;rcnasm<½n§³ pÁúMm:aRTIsTaMgenHedIm,IkMNt;m:aRTIsPaBrwgRkajsRmab;rcna sm<½n§ eyIg)an ⎡ 30 ⎤ ⎡ 0.128 0.096 0 0 − 0.128 − 0.096⎤ ⎡ D1 ⎤ ⎢0⎥ ⎢ 0.096 0.4053 − 0.2357 − 0.2357 − 0.096 − 0.072⎥ ⎢ D2 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢0⎥ ⎢ 0 − 0.2357 0.2917 0.0417 − 0.17675 0 ⎥ ⎢ D3 ⎥ ⎢ ⎥ = AE ⎢ ⎥⎢ ⎥ ⎢Q4 ⎥ ⎢ 0 − 0.2357 0.417 0.2917 0.17375 0 ⎥⎢ 0 ⎥ ⎢Q5 ⎥ ⎢ − 0.128 − 0.096 − 0.17675 0.17675 0.378 0.096 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢Q6 ⎥ ⎣ ⎦ ⎢− 0.096 − 0.072 ⎣ 0 0 0.096 0.072 ⎥ ⎢ 0 ⎥ ⎦⎣ ⎦ edayeFVIplKuNm:aRTIsénm:aRTIsEpñkxagelI enaHeyIgGackMNt;bMlas;TI D EdlCaGBaØatBIkaredaH RsayRbB½n§smIkar eBalKW 352.5 D1 = AE − 157.5 D2 = AE − 127.3 D3 = AE eKGacTTYl)ankmøaMgRbtikmμ Q BIplKuNm:aRTIsénm:aRTIsxageRkamenAkñúgsmIkar (1). edayeRbI bMlas;TIEdl)anKNna eyIg)an Q4 = 0(352.5) − 0.2357(− 157.5) + 0.0417(− 127.3) karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -490
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa = 31.8kN Q5 = −0.128(352.5) − 0.096(− 157.5) − 0.17675(− 127.3) = −7.5kN Q6 = −0.096(352.5) − 0.072(− 157.5) + 0(− 127.3) = −22.5kN !$>*> Trusses EdlmanbMErbMrYlsItuNðaPaB nigkMhusénplitkmμ (Truss having thermal changes and fabrication errors) RbsinebIGgát;xøHrbs; truss rgnUvkarlUt b¤rYjEdlbNþalBIbMErbMrYlsItuNðPaB b¤kMhusén plitkmμ enaHeKcaM)ac;RtUveRbIviFItRmYtpledIm,ITTYl)andMeNaHRsay. vaRtUvkarbICMhan. dMbUg eK caM)ac;RtUvKNnakmøaMgbgáb;cugEdlkarBarkarcl½trbs; node EdlbNþalBIsItuNðPaB b¤kMhusén plitkmμ. CMhanTIBIrKWeKRtUvdak;kmøaMgEdlesμIKña b:uEnþmanTispÞúyKñaenAelI truss Rtg; node ehIyeK RtUvKNnabMlas;TIrbs; node edayeRbIkarviPaKm:aRTIs. cugeRkay eKkMNt;kmøaMgCak;EsþgenAkñúg Ggát; nigkmøaMgRbtikmμenAelI truss edaykareFVItRmYtplénlT§plTaMgBIrenH. Cak;Esþg eKRtUvkar dMeNIrkarenH RbsinebI truss Carcnasm<½n§minkMNt;edaysþaTic. RbsinebI truss Carcnasm<½n§kMNt; edaysþaTic eKGackMNt;bMlas;TIenARtg; node edayviFIenH b:uEnþbMErbMrYlsItuNðPaB nigkMhusén plitkmμnwgminmanT§iBleTAelIkmøaMgRbtikmμ nigkmøaMgkñúgrbs;Ggát; edaysareKGacEktRmUvbERm bRmYlRbEvgrbs;Ggát; truss edayesrI. T§iBlkMedA³ RbsinebIGgát; truss manRbEvg L rgkMeNInsItuNðPaB ΔT RbEvgrbs;Ggát; nwgmankMhUcRTg;RTay ΔL = αΔTL Edl α Ca emKuNrIkedaysarkMedA. kmøaMgsgát; qo Edl GnuvtþeTAelIGgát;nwgeFVIeGayRbEvgrbs;Ggát; rYj)anRbEvg ΔL' = qo L / AE . RbsinebIeyIg dak;eGaybMlas;TITaMgBIresμIKña enaH qo = AEαΔT . kmøaMgenHnwgTb;Ggát;dUcbgðajenAkñúgrUbTI 14-14 dUcenHeyIg)an (q N )0 = AEαΔT (q F )0 = − AEαΔT Truss analysis using the stiffness method T.Chhay -491
  • Department of Civil Engineering NPIC eKRtUvdwgfa RbsinekItmankarfykMedA enaH ΔT køayCaGviC¢man ehIykmøaMgTaMgenHnwgbRBa©asTisedA edIm,IeFVIeGayGgát;sßitenAkñúgsßanPaBlMnwg. eyIgGacbMElgkmøaMgTaMgBIrenHeTAkñúgkUGredaenskledayeRbIsmIkar 14-10 EdleFVIeGay ( ⎡ QN x )0 ⎤ ⎡λ x 0 ⎤ ⎡ λx ⎤ ( ) ⎢Q ⎢ Ny ⎥ ⎢ λ 0⎥ = ⎢ y 0⎥ ⎥ ⎡1⎤ ⎢λ ⎥ ⎢ y ⎥ ( ) ⎢ QF ⎥ ⎢ 0 λ x ⎥ AEαΔT ⎢− 1⎥ = AEαΔT ⎢ − λ x ⎥ ⎣ ⎦ (14-25) ( ) ⎢ x ⎢ Q Fy ⎣ 0⎥ 0⎥ ⎢ ⎦ ⎣ ⎢ ⎥ 0 λy ⎥ ⎦ ⎢ ⎢− λ y ⎥ ⎣ ⎥ ⎦ kMhusqÁgkñúgplitkmμ³ RbsinebIeKeFVIeGayGgát;EvgCaRbEvgedImedayTMhM ΔL muxeBlP¢ab;vaeTAnwg truss enaHkmøaMg qo EdlcaM)ac;edIm,IrkSaGgát;RtwmRbEvgDIsaj L KW qo = AEΔL / L dUcenHsRmab; Ggát;enAkñúgrUbTI 14-14 eyIg)an AEΔL (q N )0 = L AEΔL (q F )0 =− L RbsinebIGgát;enHxøICagRbEvgedIm enaH ΔL køayCaGviC¢man ehIykmøaMgTaMgenHnwgbRBa©as. enAkñúgkUGredaenskl kmøaMgTaMgenHKW ( ⎡ QN x )0 ⎤ ⎡ λx ⎤ ⎢Q( ) ⎢ Ny ⎥ ⎢λ ⎥ 0 ⎥ = AEΔL ⎢ y ⎥ ( ) ⎢ QF ⎥ L ⎢− λ x ⎥ (14-26) ( ) ⎢ x ⎢ Q Fy ⎣ 0⎥ 0⎦⎥ ⎢ ⎣ ⎥ ⎢− λ y ⎥ ⎦ karviPaKm:aRTIs³ enAkñúgkrNITUeTA CamYy truss rgkmøaMgGnuvtþ bERmbRmYlsItuNðPaB nigkMhusén plitkmμ TMnak;TMngrvagkmøaMgkñúg nigbMlas;TIsRmab; truss enaHvakøayCa Q = KD + Q0 (14-27) enATIenH Q0 Cam:aRTIsCYrQrsRmab; truss TaMgmUlrbs;kmøaMgbgáb;cugEdlbNþalBIbERmbRmYl sItuNðPaB nigkMhusénplitkmμrbs;Ggát;EdlkMNt;enAkñúgsmIkar 14-25 nig 14-26. eyIgGacEbg EcksmIkarenHenAkñúgTRmg;dUcxageRkam ⎡Qk ⎤ ⎡ K11 K12 ⎤ ⎡ Du ⎤ ⎡(Qk )0 ⎤ ⎢Q ⎥ = ⎢ K ⎥⎢ ⎥ + ⎢ ⎥ ⎣ u ⎦ ⎣ 21 K 22 ⎦ ⎣ Dk ⎦ ⎣(Qu )0 ⎦ edayedaHRsaym:aRTIsenAGgÁxagsþaM eyIgTTYl)an Qk = K11 Du + K 21 Dk + (Qk )0 (14-28) Qu = K 21 Du + K 22 Dk + (Qu )0 (14-29) karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -492
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa eyagtamdMeNIrkartRmYtplEdlerobrab;xagelI eyIgGackMNt;bMlas;TI Du BIsmIkarTImYyedaydk K12 Dk nig (Qk )0 BIGgÁTaMgBIr bnÞab;mkeyIgedaHRsay Du . eyIgTTYl)an Du = K111 (Qk − K12 Dk − (Qk )0 ) − eRkayeBleyIgTTYl)anbMlas;TIrbs; node enaHeyIgGackMNt;kmøaMgkñúgrbs;Ggát;edayviFItRmYtpl eBalKW q = k ' TD + q0 RbsinebIeyIgBnøatsmIkarenHedIm,IkMNt;kmøaMgenAcugq¶ayrbs;Ggát; eyIgTTYl)an ⎡ DN x ⎤ ⎢D ⎥ qF = AE L [ − λx − λ y λx ] λ y ⎢ y ⎥ − (q F )0 N ⎢ DFx ⎥ (14-30) ⎢ ⎥ ⎢ D Fy ⎥ ⎣ ⎦ lT§plenHRsedogKñaeTAnwgsmIkar 14-23 EtvaxusKñaRtg;enATIenHvamanplbUkéntY (q F )0 EdlCa kmøaMgbgáb;cugrbs;Ggát;EdlbNþalBIbERmbRmYlsItuNðPaB nig / b¤kMhusénplitkmμdUckMNt;dUcxag elI. eKRtUvdwgfa RbsinebIlT§plEdlTTYl)anBIsmIkarenHmantémøGviC¢man enaHGgát;nwgrgkmøaMg sgát;. ]TahrN_TaMgBIrxageRkam nwgbgðajBIkarGnuvtþéndMeNIrkarrbs;viFIenH. ]TahrN_ 14-7³ kMNt;kmøaMgkñúgGgát;elx ! nig elx @ rbs; truss EdlmanTMrsnøak;dUcbgðajenA kñúgrUbTI 14-15 RbsinebIeKeFVIeGayGgát;elx @ xøICagmun 0.01 munnwgpÁúMvaeTAkñúg truss. yk AE = 8(10 3 )kN . dMeNaHRsay³ edaysarGgát;manRbEvgxøI enaH ΔL = −0.01m dUcenHGnuvtþsmIkar 14-26 eTAelIGgát;elx @ CamYy nwg λ x = −0.8, λ y = −0.6 eyIg)an ⎡ (Q1 )0 ⎤ ⎡ − 0.8 ⎤ ⎡ 0.0016 ⎤ 1 ⎢(Q ) ⎥ ⎢ − 0.6 ⎥ ⎢ ⎥ ⎢ 2 0 ⎥ = AE (− 0.01) ⎢ ⎥ = AE ⎢ 0.0012 ⎥ 2 ⎢(Q5 )0 ⎥ 5 ⎢ 0.8 ⎥ ⎢− 0.0016⎥ 5 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢(Q6 )0 ⎥ ⎣ ⎦ ⎣ 0.6 ⎦ ⎣− 0.0012⎦ 6 Truss analysis using the stiffness method T.Chhay -493
  • Department of Civil Engineering NPIC eK)anbegáItm:aRTIsPaBrwgRkajsRmab;rcnasm<n§enAkñúg]TahrN_ 14-4. edayGnuvtþsmIkar 14-27 ½ eyIg)an ⎡0⎤ ⎡ 0.378 0.096 0 0 − 0.128 − 0.096 − 0.25 0⎤ ⎡ D1 ⎤ ⎡ 0.0016 ⎤ ⎢0⎥ ⎢ 0.096 0.405 0 − 0.333 − 0.096 − 0.072 0 ⎥⎢D ⎥ 0⎥ ⎢ 2 ⎥ ⎢ 0.0012 ⎥ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢Q3 ⎥ ⎢ 0 0 0 0 0 0 0 0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢Q4 ⎥ = AE ⎢ 0 − 0.333 0 0.333 0 0 0 0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ + AE ⎢Q5 ⎥ ⎢ − 0.128 − 0.096 0 0 0.128 0.096 0 0⎥ ⎢ 0 ⎥ ⎢− 0.0016⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢Q6 ⎥ ⎢− 0.096 − 0.072 0 0 0.096 0.072 0 0⎥ ⎢ 0 ⎥ ⎢− 0.0012⎥ ⎢Q ⎥ ⎢ − 0.25 0 0 0 0 0 0.25 0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 7⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢Q8 ⎥ ⎣ ⎦ ⎢ 0 ⎣ 0 0 0 0 0 0 0⎥ ⎢ 0 ⎥ ⎦⎣ ⎦ ⎢ ⎣ 0 ⎥ ⎦ edayEbgEckm:aRTIsenHdUcbgðaj nigedayedaHRsayplKuNm:aRTIsedIm,ITTYl)ansmIkarsRmab; bMlas;TI eyIgTTYl)an ⎡0⎤ ⎢0⎥ ⎢ ⎥ ⎡0 ⎤ ⎡0.378 0.096⎤ ⎡ D1 ⎤ ⎡0 0 − 0.128 − 0.096 − 0.25 0⎤ ⎢0⎥ ⎡0.0016⎤ ⎢0⎥ = AE ⎢0.096 0.405⎥ ⎢ D ⎥ + AE ⎢0 − 0.333 − 0.096 − 0.072 ⎥ ⎢0⎥ + AE ⎢0.0012⎥ ⎣ ⎦ ⎣ ⎦⎣ 2 ⎦ ⎣ 0 0⎦ ⎢ ⎥ ⎣ ⎦ ⎢0⎥ ⎢ ⎥ ⎢0⎥ ⎣ ⎦ EdleGay 0 = AE [0.378 D1 + 0.096 D2 ] + AE [0] + AE [0.0016] 0 = AE [0.096 D1 + 0.405 D2 ] + AE [0] + AE [0.0012] edaHRsayRbB½n§smIkar eyIgTTYl)an D1 = −0.003704m D2 = −0.002084m eTaHbICaminRtUvkar eKGackMNt;kmøaMgRbtikmμ Q BIkarBnøatsmIkar (1) EdlGnuvtþtamKMrUénsmIkar 14-29. edIm,IkMNt;kmøaMgenAkñúgGgát;elx ! nigelx @ eyIgRtUvGnuvtþsmIkar 14-30 EdlenAkñúgkrNI enH eyIg)an Ggát;elx !³ λ x = 0, λ y = 1, L = 3m, AE = 8(103 )kN dUcenH ⎡ 0 ⎤ q1 = ( ) 8 10 3 [0 − 1 0 1] ⎢ ⎢ 0 ⎥ ⎥ + [0] 3 ⎢− 0.003704⎥ ⎢ ⎥ ⎣− 0.002084⎦ karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -494
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa q1 = −5.56kN Ggát;elx @³ λ x = −0.8, ( ) dUcenH λ y = −0.6, L = 5m, AE = 8 10 3 kN ⎡− 0.003704⎤ q2 = ( ) 8 10 3 ⎢− 0.002084⎥ [0.8 0.6 − 0.8 − 0.6]⎢ ⎥ − 8 10 (− 0.01) 3 ( ) 5 ⎢ 0 ⎥ 5 ⎢ ⎥ ⎣ 0 ⎦ q 2 = 9.26kN ]TahrN_ 14-8³ Ggát;elx @ rbs; Edl truss bgðajenA kñúgrUbTI 14-16 rgnUvkMeNInsItuNðPaB 83.3o C . kMNt;kmøaMgEdlekItmanenAkñúgGgát;elx @. yk α = 11.7(10 −6 )/ o C / E = 200GPa . Ggát; nImYy²manRkLaépÞmuxkat; A = 484mm 2 . dMeNaHRsay³ edaysar vamankMeNInsItuNðPaB ΔT = +83.3o C . GnuvtþsmIkar 14-25 eTAelIGgát;elx @ Edl λ x = 0.707, λ y = 0.707 eyIg)an ⎡ (Q1 )0 ⎤ ⎡ 0.707 ⎤ ⎡ 0.000689325 ⎤ 1 ⎢(Q ) ⎥ ⎢ 0.707 ⎥ ⎢ ⎥ ⎢ (Q3 )0 ⎥ ( ) ⎢ 2 0 ⎥ = AE (11.7 ) 10 −6 (83.3)⎢ ⎥ = AE ⎢ 0.000689325 ⎥ 2 ⎢− 0.707 ⎥ ⎢− 0.000689325⎥ 7 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣(Q4 )0 ⎦ ⎣− 0.707 ⎦ ⎣− 0.000689325⎦ 8 m:aRTIsPaBrwgRkajsRmab; truss enHRtUv)anbegáItenAkñúg]TahrN_ 14-2. ⎡ 0 ⎤ ⎡ 0.135 0.035 0 0 0 − 0.1 − 0.035 − 0.035⎤ ⎡ D1 ⎤ ⎡ 0.000689325 ⎤ 1 ⎢ 0 ⎥ ⎢ 0.035 ⎥ ⎢D ⎥ ⎢ 0.000689325 ⎥ 2 ⎢ ⎥ ⎢ 0.135 0 − 0.1 0 0 − 0.035 − 0.035⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ 0 0 0.135 − 0.035 0.035 − 0.035 − 0.1 0 ⎥ ⎢ D3 ⎥ ⎢ 0 ⎥3 ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ 0 ⎥ = AE ⎢ 0 − 0.1 − 0.035 0.135 − 0.035 0.035 0 ⎥ ⎢ D4 ⎥ + AE ⎢ ⎥4 0 0 ⎢ 0 ⎥ ⎢ 0 0 0.035 − 0.035 0.135 − 0.035 0 − 0.1 ⎥ ⎢ D5 ⎥ ⎢ 0 ⎥5 ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢Q 6 ⎥ ⎢ − 0.1 0 − 0.035 0.035 − 0.035 0.135 0 0 ⎥⎢ 0 ⎥ ⎢ 0 ⎥6 ⎢Q ⎥ ⎢− 0.035 − 0.035 − 0.1 0 0 0 0.135 0.035 ⎥⎢ 0 ⎥ ⎢− 0.000689325⎥ 7 ⎢ 7⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣Q8 ⎥ ⎢ ⎦ ⎢− 0.035 ⎣ − 0.035 0 0 − 0.1 0 0.035 0.135 ⎥ ⎢ 0 ⎥ ⎦⎣ ⎦ ⎢− 0.000689325⎥ 8 ⎣ ⎦ edayBnøatedIm,IkMNt;smIkarbMlas;TIEdlCaGBaØat nigedayedaHRsayRbB½n§smIkarenH eyIg)an D1 = −0.002027m D2 = −0.01187 m Truss analysis using the stiffness method T.Chhay -495
  • Department of Civil Engineering NPIC D3 = −0.002027m D4 = −0.009848m D5 = −0.002027m edayeRbIsmIkar 14-30 edIm,IkMNt;kmøaMgenAkñúgGgát;elx @ eyIg)an ⎡− 0.002027⎤ ⎢ − 0.01187 ⎥ 484[200] q2 = 10 2 [− 0.707 − 0.707 0.707 0.707]⎢ ⎢ 0 ⎥ − 484(200)11.7 10 −6 (83.3) ⎥ [ ( )] ⎢ ⎥ ⎣ 0 ⎦ = −27.09kN cMNaMfa kMeNInsItuNðPaBénGgát;elx @ nwgmineFVIeGaymankmøaMgRbtikmμenAelI truss eT edaysarva Ca truss kMNt;edaysþaTic. edIm,IbgðajBIkarBicarNakarBnøatm:aRTIsénsmIkar (1) edIm,IkMNt;kmøaMg Rbtikmμ. edayeRbIlT§plsRmab;bMlas;TI eyIg)an Q6 = AE[− 0.1(− 0.002027 ) + 0 − 0.035(− 0.002027 ) + 0.035(− 0.009828) − 0.035(− 0.002027 )] + AE [0] = 0 Q7 = AE[− 0.035(− 0.002027 ) − 0.035(− 0.01187 ) − 0.1(− 0.002027 ) + 0 + 0] + AE [− 0.000689325] = 0 Q8 = AE[− 0.035(− 0.002027 ) − 0.035(− 0.01187 ) + 0 + 0 − 0.1(− 0.002027 )] + AE [− 0.000689325] = 0 !$>(> karviPaK truss kñúglMh (Space-truss analysis) eKGacviPaK truss kñúglMhkMNt;edaysþaTic nig truss kñúglMhminkMNt;edaysþaTicedayeRbI dMeNIrkarviPaKdUcKñaEdl)anerobrab;BIelIkmun. b:uEnþ edIm,IKitG½kSTaMgbI eKRtUvbBa©ÚlFatubEnßmeTAkñúg m:aRTIsbMElg T . edIm,ITTYl)anva eyIgnwgBicarNaGgát; truss EdlbgðajenAkñúgrUbTI 14-17. m:aRTIsPaBrwgRkajsRmab;Ggát;EdlkMNt;edayeRbIkUGredaentMbn; x' RtUv)aneGayedaysmIkar 14-4. elIsBIenH tamkarGegátrUbTI 14-17 eKGackMNt;kUsIunUsR)ab;TiscenøaHkUGredaenskl nigkUGr- edaentMbn;edayeRbIsmIkarRsedogKñanwgsmIkar 14-5 nig 14-6 Edl xF − xN xF − xN λ x = cos θ x = = (14-31) L (x F − x N )2 + ( y F − y N )2 + ( z F − z N )2 yF − yN yF − yN λ y = cos θ y = = (14-32) L (x F − x N ) + ( y F − y N ) + (z F − z N ) 2 2 2 karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -496
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa zF − zN zF − zN λ z = cos θ z = = (14-33) L (x F − x N )2 + ( y F − y N )2 + ( z F − z N )2 CalT§plénTMhM ¬G½kS¦TIbI m:aRTIsbMElg ¬smIkar 14-9¦ køayCa ⎡λ x λ y λ z 0 0 0 ⎤ T =⎢ ⎥ ⎣ 0 0 0 λx λ y λz ⎦ edayCMnYsm:aRTIsenH nigsmIkar 14-4 eTAkñúgsmIkar 14-15 ¬ K = T T k 'T ¦ eyIg)an ⎡λ x 0⎤ ⎢λ 0⎥ ⎢ y ⎥ ⎢λ 0 ⎥ AE ⎡ 1 − 1⎤ ⎡λ x λ y λ z 0 0 0 ⎤ k=⎢ z ⎥ ⎢ ⎥ ⎢0 λ x ⎥ L ⎢− 1 1 ⎥ ⎣ 0 0 0 λ x λ y λ z ⎦ ⎣ ⎦ ⎢0 λy ⎥ ⎢ ⎥ ⎢0 ⎣ λz ⎥⎦ edayedaHRsayplKuNm:aRTIs eyIgnwgTTYl)anm:aRTIssIuemRTI Nx Ny Nz Fx Fy Fz ⎡ λ2 x λxλ y λxλz − λ2 x − λxλ y − λxλz ⎤ N x ⎢ ⎥ ⎢ λ y λx λ2 y λ y λ z − λ y λ x − λ2 − λ y λ z ⎥ N y y AE ⎢ k= λz λx λz λ y λ z − λ z λ x − λ z λ y − λ2 ⎥ N z 2 (14-34) L ⎢ z ⎥ ⎢ − λ2 x − λxλ y − λxλz λx2 λ x λ y λ x λ z ⎥ Fx ⎢ ⎥ ⎢− λ y λ x − λ2 y − λ y λz λ y λx λ2 y λ y λ z ⎥ Fy ⎢− λ λ − λz λ y − λ2 λ z λ x λ z λ y λ2 ⎥ Fz ⎣ z x z z ⎦ smIkarenHCam:aRTIsPaBrwgRkajsRmab;Ggát;Edl sresredayeRbIkUGredaenskl. elxkUdtam beNþayCYredk nigCYrQrtMNageGayTis x, y, z enARtg;cugCit N x , N y , N z Edlbnþedaycugq¶ay Fx , F y , Fz . sRmab;karsresrkmμviFIkMuBüÚT½r CaTUeTAvaman lkçN³gayRsYlkñúgkareRbIsmIkar 14-34 Cagkar edaHRsayplKuNm:aRTIs T T k 'T sRmab;Ggát; nImYy². dUckarerobrab;BIxagedIm dMbUgkMuBüÚT½rnwg rkSam:aRTIsPaBrwgRkajsRmab;rcnasm½<n§ K Edl manFatuesμIsUnü bnÞab;mkeTotedaysarFatunImYy² énm:aRTIsPaBrwgRkajsRmab;Ggát;RtUv)anbegáIt vaRtUv)andak;eTAkñúgTItaMgRtUvKñarbs;vaenAkñúgm:aRTIs K . eRkayeBlFaturbs;m:aRTIsPaBrwgRkaj Truss analysis using the stiffness method T.Chhay -497
  • Department of Civil Engineering NPIC sRmab;rcnasm<½n§RtUv)anbegáIt eKGacGnuvtþdMeNIrkar Edl)anerobrab;enAkñúgkfaxNÐ 14-6 edIm,I kMNt;bMlas;TIrbs;tMN kmøaMgRbtikmμ nigkmøaMgkñúgrbs; Ggát;. karviPaK truss edayeRbIviFIPaBrwgRkaj T.Chhay -498
  • mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa cMeNaT 14>1 kMNt;m:aRTIsPaBrwgRkaj K sRmab;eRKOg 14>6 kMNt;m:aRTIsPaBrwgRkaj K sRmab; truss. bgÁúM. yk A = 300mm 2 nig E = 200GPa yk A = 0.005m 2 nig E = 200GPa . snμt; sRmab;Ggát;. tMNTaMgGs;tP¢ab;edaysnøak;. 14>2 kMNt;bMlas;TItamTisedk nigTisQr enARtg;tMN ③ rbs;eRKOgbgÁúMenAkñúgcMeNaT 14>1. 14>7 kMNt;bMlas;TItamTisQrenARtg;tMN ① 14>3 kMNt;kmøaMgkñúgénGgát;nImYy²rbs;eRKOg nigkmøaMgkñúgrbs;Ggát;elx @ éncMeNaT 14>6. bgÁúMenAkñúgcMeNaT 14>1. 14>8 kMNt;m:aRTIsPaBrwgRkaj K sRmab; truss. 14>4 kMNt;m:aRTIsPaBrwgRkaj K sRmab; truss. yk A = 0.0015m 2 nig E = 200GPa sRmab; yk A = 300mm 2 nig E = 200GPa sRmab; Ggát;. Ggát;. 14>5 kMNt;bMlas;TItamTisQrenARtg;tMN ④ nigkmøaMgkñúgrbs;Ggát;elx $ éncMeNaT 14>4. 14>9 kMNt;kmøaMgkñúgénGgát;elx ^ éncMeNaT yk A = 0.0015m 2 nig E = 200GPa . 14>8. yk A = 0.0015m 2 nig E = 200GPa Problems T.Chhay -499
  • Department of Civil Engineering NPIC sRmab;Ggát;nImYy². 14>13. yk A = 1000mm 2 nig E = 14>10 kMNt;kmøaMgkñúgénGgát;elx ! éncMeNaT 200GPa . 14>8 RbsinebI Ggát;EvgCagmun10mm munnwg 14>15 kMNt;kmøaMgkñúgénGgát;elx @éncMeNaT P¢ab;vaeTAkñúg truss. edIm,IedaHRsay dkbnÞúk 14>8 RbsinebIsItuNðPaBekIneLIg 55o C . 10kN ecj. yk A = 0.0015m 2 nig E = yk A = 1000mm 2 E = 200GPa nig α = 200GPa sRmab;Ggát;nImYy². 11.7(10 −6 )/ o C . 14>11 kMNt;m:aRTIsPaBrwgRkaj K sRmab; 14>16 kMNt;kmøaMgRbtikmμenAelI truss. AE truss. AE CacMnYnefr. CacMnYnefr. 14>12 kMNt;kmøaMgkñúgénGgát;elx @ nig elx % éncMeNaT 14>11. AE CacMnYnefr. 14>13 kMNt;m:aRTIsPaBrwgRkaj K sRmab; truss. yk A = 1000mm 2 nig E = 200GPa . 14>14 kMNt;bMlas;TItamTisedkenARtg;tMN ① nigkmøaMgkñúgrbs;Ggát;elx @ éncMeNaT cMeNaT T.Chhay -500