Six Sigma project reduces analytical errors in an automated lab.


Published on

The North Shore-LIJ Health System is the third-largest nonsectarian health system in the country. ...

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Six Sigma project reduces analytical errors in an automated lab.

  1. 1. Six Sigma project reduces analytical errors in an automated lab. The North Shore-LIJ Health System is the third-largest nonsectarian health system in the country. Created in 1998, the health system's laboratory model consists of a strategically located core lab that uses total laboratory automation and offers consolidated testing, a rapid response lab in each of the system's 18 hospitals, a standardized standardized pertaining to data that have been submitted to standardization procedures. standardized morbidity rate see morbidity rate. standardized mortality rate see mortality rate. ?LIS LIS - Langage Implementation Systeme. A predecessor of Ada developed by Ichbiah in 1973. It was influenced by Pascal's data structures and Sue's control structures. A type declaration can have a low-level implementation specification. , and standardized laboratory instrumentation. The core laboratory performs over 3.5 million tests
  2. 2. annually for a client base comprised of hospitals, long-term care facilities long-term care facility n. See skilled nursing facility. , clinical trials, physician offices, and reference testing. The lab performs approximately 65% of the routine testing for the network as well as all microbiology microbiology:?see biology. microbiology Scientific study of microorganisms, a diverse group of simple life-forms including protozoans, algae, molds, bacteria, and viruses. , esoteric es?o?ter?ic?? adj. 1. a. Intended for or understood by only a particular group: an esoteric cult.?See Synonyms at mysterious. b. , molecular diagnostic, and reference testing. As part of the laboratory's ongoing performance-improvement process, changed results had been measured for years. Although the average percentage of changed results was consistently below 1% in the three main areas of the laboratory--hematology, coagulation coagulation?(k??g'y l?`sh?n), the collecting into a mass of minute particles of a solid dispersed throughout a liquid (a sol), usually followed by the precipitation or , and chemistry--the administration had noted that eight analytical process failures had occurred in the first half of 2003, resulting in the correction of reported values that affected multiple patients at one time. The problem was sporadic sporadic?/spo?rad?ic/ (spo-rad?ic) occurring singly; widely scattered; not epidemic or endemic. spo?rad?ic?or spo?rad?i?cal adj. 1. Occurring at irregular intervals. 2. ; there was no clear solution; and correcting the issue would help achieve the core lab's goal of improving patient care, increasing customer satisfaction, and boosting staff morale. The core lab's administration believed that reducing the number of failed analytical processes was a worthy goal for a Six Sigma Not to be confused with Sigma 6. Six Sigma is a set of practices originally developed by Motorola to systematically improve processes by eliminating defects.[1] A defect is defined as nonconformity of a product or service to its specifications. ?project. A multidisciplinary mul?ti?dis?ci?pli?nar?y?? adj. Of, relating to, or making use of several disciplines at once: a multidisciplinary approach to teaching.??team of technical management, information systems staff, and physicians assembled to tackle the problem using the Six Sigma define, measure, analyze, improve, and control (DMAIC DMAIC Define, Measure, Analyze, Improve, Control DMAIC Design, Measure, Analyze, Improve, Control (5 stages of Six Sigma Quality Improvement and Assurance)?) approach. Six Sigma methodology Six Sigma, a focused, high-impact process, uses proven quality principles and techniques to reduce
  3. 3. process variance, and seeks to confine errors to 3.4 defects per million opportunities In process improvement efforts, defects per million opportunities or DPMO (or nonconformities per million opportunities (NPMO)) is a measure of process performance. It is defined as ?(DPMO DPMO Defects Per Million Opportunities (Six Sigma) DPMO Deployment Process Modernization Office DPMO Defense Prisoner of War (POW)/Missing Personnel (MP)?Office ). Six Sigma relies on rigorous statistical methods and implements control mechanisms in order to tie together quality, cost, process, people, and accountability, and begins with an understanding of customer requirements and values (referred to as voice of the customer). Once these are defined, Six Sigma's process enables the identification of factors critical to customer satisfaction. The processes involved in these critical factors are then analyzed an?a?lyze?? tr.v. an?a?lyzed, an?a?lyz?ing, an?a?lyz?es 1. To examine methodically by separating into parts and studying their interrelations. 2. Chemistry To make a chemical analysis of. 3. ?and measured. Improvement strategies are focused on the vital "X." The Six Sigma goal is to reduce both variance and control processes in order to assure compliance with the critical specifications. Defining and measuring the process During the define phase, the Six Sigma team developed a high-level process map (see Figure 1), with the initial step being preparation of the analyzers for use and the final step being release of the result. The project's scope covered the process from sample placement on the analyzer analyzer?/ana?ly?zer/ (an?ah-li?zer) 1. a Nicol prism attached to a polarizing apparatus which extinguishes the ray of light polarized by the polarizer. 2. ?to the point at which the result was released in the LIS. A defect was defined as the need to change a result for any reason after verification. Also during the define phase, the Six Sigma team needed to convince lab employees that further reduction of changed results was necessary, even though the average changed-result rate was already less than 1%. To accomplish this, the team used change acceleration process tools, such as the threat/opportunity matrix, to demonstrate the benefits of reducing changed results and the disadvantages of maintaining the current changed-result rate. For instance, reducing changed results would increase lab efficiency, improve staff performance and morale, and boost market share. Maintaining the current rate of changed results would ultimately diminish the core lab's reputation, leading to a loss of revenue and decreased staff morale. [FIGURE 1 OMITTED] In the measure phase, the Six Sigma team used operational definitions and the lab supervisory staff to perform measurement-system analysis. Because the lab already operated at a high sigma SIGMA - A scientific visual programming environment from NASA. ?level, the measurement system had to be 100% accurate for reproducibility reproducibility?Lab medicine? The degree of agreement among repeated measurements of a particular parameter, presented in terms of a standard deviation or coefficient of variation of the results in a set of measurements ?and repeatability. The team had to ensure that any variations were due to the process, not the measurement system. In order to obtain this type of
  4. 4. accuracy, the team developed operational definitions to classify clas?si?fy?? tr.v. clas?si?fied, clas?si?fy?ing, clas?si?fies 1. To arrange or organize according to class or category. 2. To designate (a document, for example) as confidential, secret, or top secret. ?errors: procedural, autoverification, sample, clerical, mechanical, and unknown. With the aid of logic trees, the team refined these definitions five times to ensure all errors were classified consistently so that repeatability and reproducibility were 100%. Statistical analysis using the Six Sigma methodology revealed that the lab operated at a 4.8 sigma level. For the period of May 2003 through July 2003, the laboratory corrected 585 test results out of 1,645,975 results reported. The DPMO was 355. One of the Six Sigma tools--the stakeholder stakeholder?n. a person having in his/her possession (holding) money or property in which he/she has no interest, right or title, awaiting the outcome of a dispute between two or more claimants to the money or property. ?analysis--aided in developing a strategy to gain support for the project from moderately opposed individuals and helped identify those individuals likely to be involved in the process who could serve as resources for the team. [FIGURE 2 OMITTED] Analyzing and improving procedures In the analyze phase, the Six Sigma team developed its aggressive goal of reducing analytical errors by 35% to a DPMO of 230 and a sigma score of 5.0. As the process moves toward a sigma level between 5 and 6, eliminating defects without eliminating the human factor becomes increasingly difficult. Graphical analysis using Pareto charts (see Figure 2) indicated 86% of the defects could be attributed to two types of errors: Whereas 52% of the defects were procedural errors committed by employees while reviewing results, 34% of the defects were the result of autoverification errors by the LIS. This discovery was enlightening en?light?en?? tr.v. en?light?ened, en?light?en?ing, en?light?ens 1. To give spiritual or intellectual insight to: ; SOPs (standard operating procedures standard operating procedure?Medtalk A technique, method or therapy performed 'by the book,' using a standard protocol meeting internally or externally defined criteria; a formal, written procedure that describes how specific lab operations are to be performed. ) were not accomplishing their intended goals. Six Sigma focuses on process, not people. Before the analysis, the team members had been convinced the culprit was something beyond the core lab's control, such as unacceptable specimens received from the rapid response labs or from the outreach Outreach is an effort by an organization or group to connect its ideas or practices to the efforts of other organizations, groups, specific audiences or the general public. ?physician's office. The lab had established SOPs for all operations, yet the staff was having difficulty making key decisions when it came to releasing analytical results. The analysis of variance (ANOVA anova see analysis of variance. ANOVA?Analysis of variance, see there ) proved this vital "X" to be statistically significant. The null hypothesis null hypothesis, n theoretical assumption that a given therapy will have results not statistically different from
  5. 5. another treatment. null hypothesis, n ?that all types of analytical errors are the same was rejected because the p-value 0.001 was less than 0.05; thus, the team could conclude that a statistical difference in the number of defects existed among the different error categories. The team utilized tools--like failure mode and effect analysis (FMEA FMEA Fehler-M?glichkeiten & - einfluss Analyse (German: Failure Mode & Effect Analysis) FMEA Failure Modes & Effects Analysis FMEA Florida Music Educators Association FMEA Florida Municipal Electric Association )--to break down the very complicated process into individual steps: potential failure modes, effects, severity, cause, occurrence, control, and detection (Figure 3), so its members could look at key drivers, or "Xs," in the process. Data for each step was analyzed graphically and tested mathematically for statistical significance. One vital "X" was that the majority of errors occurred on two analyzers: general chemistry and hematology hematology Branch of medicine concerned with the nature, function, and diseases of the blood. It covers the cellular and serum composition of blood, the coagulation process, blood-cell formation, hemoglobin synthesis, and disorders of all these. . The team drilled down, utilizing the five why's tool and the voice of the customer from the technical staff. By developing an assessment tool, the team identified deficiencies in the staff training program. Staff trained by the vendor or lab supervisors scored 40 points higher on competency COMPETENCY, evidence. The legal fitness or ability of a witness to be heard on the trial of a cause. This term is also applied to written or other evidence which may be legally given on such trial, as, depositions, letters, account-books, and the like. ???? 2. ?tests than peer-trained staff. The result was obvious. Ongoing basic training needed to be performed to stress analyzer maintenance, troubleshooting Troubleshooting is a form of problem solving. It is the systematic search for the source of a problem so that it can be solved. Troubleshooting is often a process of elimination - eliminating potential causes of a problem. , and recognition of analyzer "flags." [FIGURE 5 OMITTED] To reduce the number of procedural errors in the improve phase, a simplified result-review guideline guideline?Medtalk A series of recommendations by a body of experts in a particular discipline. See Cancer screening guidelines, Cardiac profile guidelines, Gatekeeper guidelines, Harvard guidelines, Transfusion guidelines. ?tool was provided to technologists as an aid in the critical decision-making process used to validate test results (Figure 4). The autoverification process was modified to capture real-time suspect flags for CBC (1) (Cell Broadcast Center) See cell broadcast. (2) (Cipher Block Chaining) In cryptography, a mode of operation that combines the ciphertext of one block with the plaintext of the next block. ?orders; results that required review were held by the LIS. The LIS team designed software that enabled real-time analyzer-result monitoring for chemistry analyzers, complete with an audio alert for notification of potential problems. Controlling results In the control phase, the Six Sigma team implemented a plan that incorporated individual and moving range charts for monitoring corrected results. The control plan enabled the team to determine the method for monitoring frequency, alert flag, action, and specific accountability for
  6. 6. each of the key variables in the process. The DPMO for corrected results is now monitored on a monthly basis (see Figure 5). The Six Sigma metric has become part of the lab's quality-management program. Real-life examples of analyzer printouts and flag results are used to assess staff competency on an ongoing basis. At the end of the control phase, the process went from a 4.8 sigma level to a 5.0 sigma level. Using the chi-square test chi-square test:?see statistics. , the team was able to demonstrate a statistically significant decrease in the number of corrected results. The technical area of the core lab has experienced a 20% growth in volume from the completion of the project in December 2003 to present. The Six Sigma team turned the project over to its process owner The process owner is the person who co-ordinates the various functions and work activities at all levels of a process. This person might have the authority or ability to make changes in the process as required, and manages the entire process cycle to ensure performance ?in January 2004. Since that point, the department has operated at a sigma level of 5.0 or higher and was at a 5.2 sigma level as of October 2004. This project produced no direct financial impact. As chairman of the Department of Laboratories, Dr. Thomas Sodeman observes, "The error-reduction project was undertaken because it was the right thing to do." The Six Sigma DMAIC methodology has many advantages. It is a rigorous process that engages front-line employees in process redesign re?de?sign?? tr.v. re?de?signed, re?de?sign?ing, re?de?signs To make a revision in the appearance or function of. re . It utilizes data and the voice of the customer to determine the factors that are most critical to quality. Controls and accountability are put in place to ensure the process remains efficient. Finally, this approach provides lab personnel with the tools to take a good process and make it even better. Figure 3. Failure mode and effect analysis Analyze Rank process steps--narrows vital Xs with risk priority number Process step/input Potential failure effects What is the process Potential failure mode What is the impact on the step and input under In what ways does the key output variables investigation? key input go wrong? (customer requirements)? Autoverification Rule manager not Results released without working review Report result SOP not followed Wrong result Sample prep Label needs Delay in testing, or repositioning redraw needed Shift communication Tech leaves early or Satus of testing site arrives late unknown Review results Staffing issues Results get delayed Review results LIS problems Results get delayed Instrument prep Printer jams, no Delay in testing paper, toner out Run QC QC out of range Testing delayed while problem corrected
  7. 7. Review results Instrument problems Results get delayed Gather work LIS or CLAS down and Delay in testing techs absent Instrument startup Out of reagents Delay in testing Analyze specimens Samples not assayed Results delayed Process step/input Potential causes What is the process What causes the step and input under key input to go investigation? SEVERITY wrong? OCCURRENCE OCCURRENCE Autoverification 8 LIS overburdened 5 5 Report result 6 Tech error 3 3 Sample prep 7 Phiebotomist's 5 5 technique Shift communication 8 Tech does not inform anyone of 6 6 status Review results 2 Stress 5 5 Review results 5 LIS overburdened 5 5 Instrument prep 2 Tech distracted 5 5 with other duties Run QC 2 QC not properly 2 2 handled Review results 2 Training 3 3 Gather work 2 Schedules not 2 2 followed Instrument startup 2 Startup not done 1 1 property Analyze specimens 2 Orders delayed 1 1 in getting to analyzers Process step/input Current controls What is the process What are the existing controls step and input under and procedures (inspection and investigation? test) that prevent either the cause or the failure mode? DETECTION RP N Autoverification 5 200 Report result Exception report 8 144 Sample prep 3 105 Shift communication 2 96 Review results 8 80 Review results 3 75 Instrument prep Observation 2 20 Run QC SOP 5 20 Review results 2 12 Gather work 2 8 Instrument startup Checklist 3 6
  8. 8. Analyze specimens 1 2 Figure 4. Error classification guide Improve Chemistry--Hitachi 747 Test Detail Range Review Critical low high low high low high ALB 0.1 10.0 1.5 6.5 ALKP 3 1000 3 AMY 4 1500 4 BALKP 3 1000 3 BUN 1 150 1 130 90 CA 0.2 16.0 6.0 10.5 7.0 13.0 CHOL 3 800 30 500 CL 60 140 75 130 CO2 10 45 10 40 10 45 CPK 4 2300 4 CREAT 0.1 25.0 8.0 DBILI 0.1 10.0 15.0 GGT 3 1200 3 GLU 2 750 45 500 45 450 HDL 8 150 15 K 1.5 10.0 2.0 7.0 2.9 6.0 LDH 5 1000 50 MG 0.1 6.0 0.5 4.0 NA 80 180 120 155 125 155 PHOS 0.3 20.0 1.0 8.0 SGOT 4 800 4 SGPT 4 400 4 TBILI 0.1 30.0 5.0 TP 0.2 15.0 4.0 9.0 TRIG 4 1000 15 400 URIC 0.2 25.0 1.0 20.0 By Nancy Riebling, MBB MBB Men's Basketball MBB Master Black Belt (Six Sigma) MBB Messerschmitt-B?lkow-Blohm MBB Medical Biochemistry and Biophysics (Karolinska Institutet, Stockholm, Sweden) MBB Make Before Break , MS, MT(ASCP ASCP?American Society of Clinical Pathologists. ), and Laurel Laurel, cities, United States Laurel. 1 Town (1990 pop. 19,438), Prince Georges co., central Md., about halfway between Washington, D.C., and Baltimore; patented in the late 1600s, inc. 1870. ?Tria, MS, SC(ASCP)
  9. 9. Nancy Riebling, MBB, MS, MT(ASCP),, is the director of Operational Performance Solutions and a Six Sigma Master Black Belt for the North Shore-LIJ Health System, Laurel Tria, MS, SC(ASCP),, is project manager for the Core Lab and a Six Sigma Certified See certification. ?Black Belt. The Six Sigma program is part of the Center for Learning & Innovation under the health system's Corporate University. COPYRIGHT 2005 Nelson Publishing No portion of this article can be reproduced without the express written permission from the copyright holder. Copyright 2005 Gale, Cengage Learning. All rights reserved. lab.-a0133503509