Workshop Fibrenamics na Proteção PessoalUniversidade do Minho, Campus de Azurém, 24 outubro, 2012     Materiais Nanoestrut...
GRF- Functional Coatings Group    Innovative nanoscale coating architectures for functional decorative and    smart surfac...
Thin film deposition systems   Magnetron Sputtering – DC and pulsed DC mode                                         Single...
NanotecnologiaA nanotecnologia é uma área de investigação e desenvolvimentomuito ampla e multidisciplinar que se baseia no...
Nanotecnologia e impacto      sócio-económicoA nanotecnologia está a emergir como o campo  mais promissor e de maior expan...
Classes de Materiais NanoestruturadosUma grande classe de materiais, com microestruturas moduladas desde  zero a 3 dimensõ...
% de átomos nas fronteiras de grão em materiais               nanocristalinos                                           HR...
Aplicações da Nanotecnologia• Materiais   – materiais nanoporosos   – materiais nanoestruturados   – nanocompósitos   – ca...
Nanotechnology Applications on textiles                                  Nanofibres production (ex. electrofiation)       ...
Nanotechnology Applications on textiles       Incorporation of nanoparticles, such as silver nanoparticles and       carbo...
IMPACT RESISTANCE“Liquid Armor” (shear thickening fluid) – its nanoparticle       based coating material allows fabric to ...
Anti-sujidadeSuperfície super-hidrofóbica                               Vasco Teixeira
Commercial Applications• Nano-Care™ Plain-Front Chinos are amazing  trousers that do not wrinkle and, when a glass of  red...
Smart nanocoatings – Self-cleaning and anti-dirt surfaces                          Water droplets at surfaces: contact ang...
Photocatalytic Activity of TiO2 Sputtered Coatings for              Self-Cleaning Applications               TiO2 - MICROS...
TiO2 -EVALUATION OF PHOTOCATALYTIC                      ACTIVITY                                                          ...
Active nanocoatingsSmart multilayered nanocoatings – smart windows and smart labels Electrochromic materials change their ...
Nanocoatings Ativos                    Revestimentos Termocromáticos    Materiais Termocromáticos como    o óxido de vanád...
THERMOCHROMIC COATINGS                                                        VO2(M)                                      ...
THERMOCHROMIC COATINGS   Solar control coatings are a technology with growing interest due to the   necessity of improving...
Thermochromic coatings: Pure VO2                                                  λ=2.5 µm                     50         ...
Thermochromic coatings: V0.97W0.03O2                                         λ=2.5 µm                     50              ...
Biomimetic Textiles using Nanocomposites     Chameleon Effect                Thermocromic Pigments can be used to change  ...
Self-Cleaning textiles using biodegradable fibers: Poly(lactic acid)                               - PLA            Poly(l...
Scanning Electronic Microscopy (SEM)   and Atomic Force Microscopy (AFM    PLA fiber without plasma treatment             ...
Hidrophobicity of PLA fabricsContact angle for the    Contact angle for the PLAnon treated PLA fabric   fabric treated wit...
Scanning Electronic Microscopy (SEM/EDX) and Atomic Force Microscopy (AFM)             TiO2 Nanocoating on PLA fibers     ...
PLA Fabrics - Antibacterial PropertiesPLA fabric without nanocoating      PLA fabric with TiO2 nanocoatingdid not show bac...
Wearable Electronic TextilesTransport andautomotive industries isone of the largest thatbenefits from interactiveelectroni...
Potential Applications: Future Challenges A nanocoating that could possibly have the ability to self heal (self-repairing ...
CONCLUSÕESFilmes finos eletro- / termo- cromáticos capazes de modular acor das superfícies têxteis, e controlar o fluxo de...
Upcoming SlideShare
Loading in …5
×

Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança -Fibrenamics Vasco Teixeira 24_Oct_2012

5,191
-1

Published on

Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança, Workshop Fibrenanmics 2012

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
5,191
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança -Fibrenamics Vasco Teixeira 24_Oct_2012

  1. 1. Workshop Fibrenamics na Proteção PessoalUniversidade do Minho, Campus de Azurém, 24 outubro, 2012 Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança Vasco Teixeira , Joaquim Carneiro, Sofia Azevedo, Jorge Neves* GRF-Functional Coatings Group & * Textile Eng. Dept Universidade do Minho Guimarães - Portugal email: vasco@fisica.uminho.pt Sumário Nanotecnologia, aplicações e impacto sócio-económico Materiais Nanoestruturados e Revestimentos Funcionais Algumas aplicações no conforto e proteção pessoal “Smart” nanocoatings (Revestimentos inteligentes) Anti-sujidade, auto-limpantes (self-cleaning) Termo- e Electrocromáticos Potenciais aplicações: desafios futuros Conclusões Vasco Teixeira
  2. 2. GRF- Functional Coatings Group Innovative nanoscale coating architectures for functional decorative and smart surfaces 50 10ºC 40 Transmittance (%)a b 30) ) 20 10 70ºC 0 500 1000 1500 2000 2500 Wavelength (nm) Vasco Teixeira
  3. 3. Thin film deposition systems Magnetron Sputtering – DC and pulsed DC mode Single Magnetron Sputtering Ion Beam AssistedMulti Magnetron Sputtering Sputtering Deposition DC and Pulsed DCRF- insulator materialsDC-Conductive materials Pulsed DC- Alltype of materials Vasco Teixeira
  4. 4. NanotecnologiaA nanotecnologia é uma área de investigação e desenvolvimentomuito ampla e multidisciplinar que se baseia nos maisdiversificados tipos de materiais (polímeros, cerâmicos,metais, semicondutores compósitos e biomateriais),estruturados à escala nanométrica (nanoestruturados) de modoa formar blocos de construção (building blocks) como clusters,nanopartículas, nanotubos, nanofibras e nanofilmes, que porsua vez são formados a partir de átomos ou moléculas. Vasco Teixeira
  5. 5. Nanotecnologia e impacto sócio-económicoA nanotecnologia está a emergir como o campo mais promissor e de maior expansão de I&DAs expetativas para que a nanotecnologia melhore asegurança e a qualidade de vida dos cidadãos sãobastante elevadas e por outro lado apresenta um potencialenorme para novas soluções para problemas industriaisatravés de técnicas de nanofabricação emergentes.A Nanotecnologia já começou a ter um considerável impactosócio-económico na Europa, EUA e Japão. Segundo algunsestudos de mercado poderá vir a ser responsável por maisde 100 milhões de postos de trabalho diretos ouindiretamente à escala mundial nos próximos 15 anos. Vasco Teixeira
  6. 6. Classes de Materiais NanoestruturadosUma grande classe de materiais, com microestruturas moduladas desde zero a 3 dimensões na escala de comprimento menor que 100 nm R.W. Siegel, Nanophase Materials, Encyclopedia of Applied Physics, VCH Publishers 1994 Vasco Teixeira
  7. 7. % de átomos nas fronteiras de grão em materiais nanocristalinos HRTEM image of a region of nanocrystalline palladium-As variações mais importantes são provocadas não pela ordem de grandezada redução no tamanho, mas pelos novos fenómenos observados, que sãointrínsecos ou tornam-se dominantes à nanoescala.-Estes fenómenos incluem confinamento devido ao tamanho, predominânciade fenómenos de interface (à nanoescala, a relação superfície/volume éparticularmente dominante) e fenómenos quânticos. Vasco Teixeira
  8. 8. Aplicações da Nanotecnologia• Materiais – materiais nanoporosos – materiais nanoestruturados – nanocompósitos – catálise – multifuncionais, moduláveis, materiais inteligentes (smart materials)• Biotecnologia – nanosensores, nanoprovas de actividade/função biológica – máquinas biomoleculares, libertação controlada de farmacos – bioeletrónica, nanomedicina (nanorobots), tecidos/orgâos artificiais – materiais auto-organizados (self-assembling)• Electrónica, ótica e fotónica – confinamento quântico (pontos quânticos-quantum dots) – Lasers (comunicações de fibra óptica) – eletrónica à escala molecular – eletrónica transparente e flexível – filmes finos para eletrónica e fotónica Vasco Teixeira
  9. 9. Nanotechnology Applications on textiles Nanofibres production (ex. electrofiation) Putting nanoparticles on the fibres Surface treatment/modification with plasma treatments Production of nanocoatings on the textile surfaces (ex. by PVD) The nanocoatings on textiles should have enough elasticity, resistance to wash and to be functional. The techniques used to produce this treatments should operate to compatible temperatures with textiles resistance Some nanocoatings applications / functionality on textiles:• TiO2 – UV Protection, photocatalysis effect, self-clean effect, anti-static• Ag – Antimicrobial activity• SiO2 – ceramic wear resistant nanocoatingsNano titanium dioxide and nano-silica are used to improve the wrinkle resistanceof cotton and silk. Vasco Teixeira
  10. 10. Nanotechnology Applications on textiles Incorporation of nanoparticles, such as silver nanoparticles and carbon nanotubes, can be used to create fibers that are antimicrobial or have increased strength of electrical conductivity Other news functions have been addressed, such as speciality textiles for medical therapy. Silver-containing fabrics have been successfully investigated for treating neurodermatitis. http://www.biomedcentral.com/1472-6750/9/34/figure/F8?highres=y Silver containing socks have been reported for preventingComparison between foot odour.an untreated synthetic The well known UV protectivefilament (top) with a property of titanium dioxide hastreated filament(bottom). The filament also been added to textileis approximately 10µm fibres.in width. Vasco Teixeira
  11. 11. IMPACT RESISTANCE“Liquid Armor” (shear thickening fluid) – its nanoparticle based coating material allows fabric to remain flexible, , but upon impact becomes hard. Applications for body armor vests, helmets, and gloves. Vasco Teixeira
  12. 12. Anti-sujidadeSuperfície super-hidrofóbica Vasco Teixeira
  13. 13. Commercial Applications• Nano-Care™ Plain-Front Chinos are amazing trousers that do not wrinkle and, when a glass of red wine is spilt onto the cream coloured fabric, it just rolls off! Bonded to the fabric is a durable stain- and wrinkle-resistant Nano-Care by Nano- Tex treatment that ensures creases stay in, but stains and wrinkles stay out.A well known hydrophobic material isPolytetrafluorethylen (PTFE) or Teflon. Thismaterial has been used to produce waterproofclothing such as Gore-Tex, which consists ofseveral laminated layers surrounding a thin Teflonmembrane.More recent approaches are based on the use ofnanoparticles and dendrimers.Nanoparticles such as SiO2 increase the washingpermanence of the textile finish. Vasco Teixeira
  14. 14. Smart nanocoatings – Self-cleaning and anti-dirt surfaces Water droplets at surfaces: contact angle θ << 90° hydrophilic surface θ= 120° hydrophobic surface (e.g. Teflon) sliding drops, no roll off θ 180° super-hydrophobic surface roll off angle 0° Super-hydrophobic surfaces: “Self-cleaning effect” -Rolling water drops act as “mini-wipers“(flat) hydrophobic surface hydrophobic surface combined -no adhering water drops =>90°<= intrinsic contact angle θi <=120° with specific surface nano-roughness evaporation residues, no contact angle θ 180° “spots” -self-cleaning Vasco Teixeira
  15. 15. Photocatalytic Activity of TiO2 Sputtered Coatings for Self-Cleaning Applications TiO2 - MICROSTRUCTURE AND MORPHOLOGY (SEM) and (AFM) (a) (b) SEM micrographs showing the surface morphology of TiO2 films deposited under two different sputtering pressures: 800 nm 800 nm a) pressure of 0.4 Pa; b) pressure of 0.5 Pa. AFM 3D images of TiO2 films deposited under the same total pressure of 0.5 Pa and with different iron concentration: (a) (b) a) low iron concentration Ra. = 1.985 nm Ra = 4.518 nm Rms = 2.585 nm Rms = 5.697 nm b) high iron concentration“Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2films prepared by dc reactive magnetron sputtering”, J.O. Carneiro, V. Teixeira, A. Portinha,L. Dupák, A. Magalhães and P. Coutinho, Vacuum, Vol 78, 2005, p.37-46 Vasco Teixeira
  16. 16. TiO2 -EVALUATION OF PHOTOCATALYTIC ACTIVITY 90 Transmittance spectra: %T 85 TiO2 coated substrate Rhodamine-B aqueous solution 80Mercury 75tube lamp rhodamine B 15 min 70 30 min 45 min %T≅65.8 65 60 min 75 min %T≅63.4 90 min 60 450 470 490 510 530 550 570 590 610 630 650 UV-Vis irradiating light λ≅554 nm c ln (%T 100 )   C  = ln %  = 4.6 − kt C0 is the initial aqueous RhB c 0 ln (%T0 100 )     Co   concentration, and C is the aqueous RhB concentration after 15 up to 90 Kinetic first-order reaction: k is the min irradiation time. apparent photodegradation rate constant Vasco Teixeira
  17. 17. Active nanocoatingsSmart multilayered nanocoatings – smart windows and smart labels Electrochromic materials change their optical properties persistently and reversibly under the action of voltage pulses. By sandwiching the electrochromic material and an ion rich transparent Carl M. Lampert, Materials Today, March 2004 p.28-35 solid between a layer of a transparent conductor, a very small potential can induce an electric field that causes ions to cross to the electrochromic layer and change its colour state. colour → xM + + xe − + WO 3 M x O3 ← bleach DaimlerChrysler Courtesy: C. Granqvist, ChromoGenics Ferrari Vasco Teixeira
  18. 18. Nanocoatings Ativos Revestimentos Termocromáticos Materiais Termocromáticos como o óxido de vanádio entre outros, são usados em dispositivos onde a mudança de propriedades óticas/cor (reversível) é ativada por mudanças de temperatura. 50 10ºC 40Transmittance (%) 30 20 10 70ºC 0 500 1000 1500 2000 2500 Wavelength (nm) Vasco Teixeira
  19. 19. THERMOCHROMIC COATINGS VO2(M) T Low T High Vanadium oxides are a class of materials with outstanding physical and chemical T ~ 68ºC properties Reversible They undergo an abrupt Semiconductor Metallic transition from a non- Monoclinic phase Tetragonal phase metallic to a metallic state with increasing temperature Low ---- IR reflectance --- High High --- Electrical resistance --- LowThey find technological applications such as: - optical and electrical switching devices - light detectors - temperature sensors - microbatteries Vasco Teixeira
  20. 20. THERMOCHROMIC COATINGS Solar control coatings are a technology with growing interest due to the necessity of improving the energy efficiency of buildings avoiding excessive energy consumption with cooling systems on summer. VO2(M) is being considered as a potential candidate for application in smart windows with active solar control for energy savings However, I.P. Parkin and T.D. Manning, Journal of Chemical Education 83 (2006) 393-400 - improved transmittances (VIS) and higher thermochromic switch (IR) are required - doping is necessary in order to decrease the intrinsic phase transition temperature(~68ºC) to acceptable values (25-30ºC) - color (yellow-brown) neutralization is also an issue to be addressed Vasco Teixeira
  21. 21. Thermochromic coatings: Pure VO2 λ=2.5 µm 50 50 45 Heating 10ºC Cooling 40 40 Transmittance (%) 35 Transmittance (%) 30 30 25 20 Ts=63ºC 20 15 10 70ºC 10 5 0 0 10 20 30 40 50 60 70 80 90 100 110 0 500 1000 1500 2000 2500 Temperature (ºC) Wavelength (nm) Ts heating/cooling determined by differentiating the respective curves Ts = (Ts heating+Ts cooling)/2 Vasco Teixeira
  22. 22. Thermochromic coatings: V0.97W0.03O2 λ=2.5 µm 50 50 45 Heating Cooling 10ºC 40 40 35 Transmittance (%) Transmittance (%) 30 30 25 20 20 15 Ts = 40ºC 70ºC 10 10 5 0 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 2500 Temperature ºC Wavelength (nm) W doped films with different switching temperatures (e.g. 20 to 60ºC) and max. transmittance over 40%, in the visible, can be easily obtained by reactive magnetron sputtering. Vasco Teixeira
  23. 23. Biomimetic Textiles using Nanocomposites Chameleon Effect Thermocromic Pigments can be used to change the colour state of textile materials. Changes from colour to colourless states as Heating temperature rises. Cooling With decreasing temperature, the colour returns. The pigment is encapsulated in aqueous conditions and the resultant pigment is in slurry form. SHELL (Polymer material) Vasco Teixeira
  24. 24. Self-Cleaning textiles using biodegradable fibers: Poly(lactic acid) - PLA Poly(lactic acid) (PLA) is a biodegradable polymer which consists of linear aliphatic thermoplastic polyester derived from 100% of renewable sources such as corn. PLA is used broadly in textile applications due tothe fact that PLA is biodegradable and its life SEM micrographs of TiO2 coated surface of PLA textile fibres:cycle potentially reduces the Earth’s carbon (a)—without washing treatments; (b)—with washing treatments.dioxide level. Ra = 6.76nm Rms = 9.16nm AFM image of TiO2 Photocatalytic Ability nanocoating produced via Pulsed Magnetron Sputtering (PMS). Development of Super-hydrophobic Textile Surfaces Vasco Teixeira
  25. 25. Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM PLA fiber without plasma treatment PLA fiber with plasma treatmentV. Teixeira, Invited talk at NATO Advanced Research Workshop on “Textile Composites”,May 18-21, Kiev, Ukraine Vasco Teixeira
  26. 26. Hidrophobicity of PLA fabricsContact angle for the Contact angle for the PLAnon treated PLA fabric fabric treated with PVD plasma Vasco Teixeira
  27. 27. Scanning Electronic Microscopy (SEM/EDX) and Atomic Force Microscopy (AFM) TiO2 Nanocoating on PLA fibers without plasma treatment TiO2 Nanocoating on PLA fibersV. Teixeira, Invited talk at NATO advanced research workshop on with plasma treatment“Textile Composites”, May 18-21, Kiev, Ukraine Vasco Teixeira
  28. 28. PLA Fabrics - Antibacterial PropertiesPLA fabric without nanocoating PLA fabric with TiO2 nanocoatingdid not show bactericide activity shows 100% bactericide activity Vasco Teixeira
  29. 29. Wearable Electronic TextilesTransport andautomotive industries isone of the largest thatbenefits from interactiveelectronic and technical The ”life jacket” is a medical devise wornTextiles (heating, anti- by the patient that consequently reads theirodour). They have uses blood pressure or monitors the heart rate;in space shuttles, the information is transferred to a computeraircraft and racing cars. Medical and read by medical staff. Automotive & Transport Entertainment Interactive Textiles Club wear that reacts to movement, heat and light. Clothing Sportswear /LeisureGloves that containheaters, or built in MilitaryLED’s emitting lightso that a cyclist can Some sports clothingbe seen in the dark. such as car and motorbike Voice active wearable racing also astronauts computers that enable the user suits contain integrated to work hands free whilst electronic components. operating machinery etc... Vasco Teixeira
  30. 30. Potential Applications: Future Challenges A nanocoating that could possibly have the ability to self heal (self-repairing function) Textile surfaces which can remove surface scratches and scuff marks; repel insects; and decolorize red wine stains are under development Nanotechnology is being used to develop “sensorized” garments with the ability to monitor body temperature and vital signs Bioreactive polymeric coatings are being developed to protect the wearer against biological and chemical attacks Military uniforms are being developed that will change colors on command to camouflage the user Vasco Teixeira
  31. 31. CONCLUSÕESFilmes finos eletro- / termo- cromáticos capazes de modular acor das superfícies têxteis, e controlar o fluxo de calor.Revestimentos nanoestruturados e filmes finos para superfíciesinteligentes (implantes biomédicos, auto-limpante, anti-microbianas, auto-regeneração, dispositivos sensoriais e denanodiagnóstico médico).Superfícies nanograduadas e nanocompósitos comincorporação de nanopartículas (p.ex. filmes de dióxido detitânio com pigmentos orgânicos, fibras têxteis com nanopartículas– libertação controlada de aromas e/ou fármacos).Sistemas para eletrónica flexível: sistemas ultra-eficientes deenergia, células solares de última geração nano, integração desistemas fotovoltaicos e OLED’s em superfícies flexíveis,nanofilmes e tratamentos plasma para polímeros e têxteis. Vasco Teixeira

×