Energy and environment (ocean energy is blue energy)

2,972 views
2,877 views

Published on

Saatnya beralih menuju bahan bakar gas, dan mulai memanfaatkan energi baru dan terbarukan. Ocean Energy is Blue Energy

Published in: Technology, Business
0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,972
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
272
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide

Energy and environment (ocean energy is blue energy)

  1. 1. Kresnayana Yahya, M.Sc
  2. 2. Energy and Environment2
  3. 3. PERPACUAN Food and Biofuel3
  4. 4. Ocean energy4
  5. 5. Pertumbuhan ekonomi dan lingkungan• Peningkatan aktivitas ekonomi dan pendayagunaansumber alam menjadi kenyataan yang belumdiperhitungkan sisi perusakan dan penurunan dayalingkungan• Integrasi seluruh perhitungan dan penghitunganpotensi sumber alam dan seluruh mata rantainyamemerlukan suatu strategy baru• System National Account 2008 akan diperkenalkansecara bertahap untuk mengintegrasikan seluruhkegiatan dan perhitungan ekonomi denganpemanfaatan dan neraca sumber alam yang ada5
  6. 6. 6
  7. 7. Perencanaan Bisnis dan pembangunan• Keyakinan masa lalu bahwa neraca sumber alam kitamasih sangat berlebih harus di imbangi denganpenghitungan berapa penurunan daya lingkungansecara faktual• Kecepatan dan pemborosan pemanfaatan sumber alamjustru sedang menjadi ancaman dan kerugian masadepan• Panduan untuk perilaku dan gagasan pembaharuankebijakan energy terpadu dengan seluruh prosespemanfaatan lingkungan harus menjadi upaya baru• Perpacuan dan perebutan lahan untuk pangan danEnergy akan terjadi tanpa kendali kebijakan7
  8. 8. 8IEA Sounding the Alarm on Global GHGEmissions• IEA Estimates* (May 29th 2011, Guardian Article)§ 2008: 29.3 gigatonnes of CO2§ 2009: 29.0 “§ 2010: 30.6 “ (highest ever)• Small effect of the recession on emissions• 80% of current power stations will still be in use in2020 locking in 11.2 Gt• Gap in scaling back on nuclear cannot be filled byrenewables à increase reliance on fossil fuels• Continued shift to unconventional resources*Upcoming World Energy Outlook (2011) 8
  9. 9. 9The Unconventional RealityConventional 0il & GasOil ShaleTight GasCBMShale GasGas HydrateGas-to-liquidsHeavy OilDeep GasBiofuelsCostsEnergy IntensityGHG EmissionsTight Oil9
  10. 10. 10EES Technical Arm of CCEMC*A new approach for advancingtransformative technology• 16 projects approved inRound #1 and #2§ Energy Efficiency : 12 projects -$33 M§ Renewables: 5 projects - $38 M§ Cleaner Energy Production andCCS: 5 projects - $28 M• Round 3 – announcementshortly• Round 4 - underway*Climate Change & EmissionsManagement Corporation 10
  11. 11. 11EES’ Oil Sands Technology Framework - Room toImprove LCA* Emissions• Efficiency improvements – thermalrecovery, mining, upgrading§ Energy intensity of water treatment forsteam• New wave - efficient oil sandsproduction technologies• Next generation upgradingtechnologies - integration withgasification and CCS§ Partial upgrading• Integration of renewables and nuclearØResearch & technologyadaptation costsØLarge scale deploymentØTime horizonØCapacity – human,infrastructure*Life Cycle Analysis 11
  12. 12. 12Impact of Increased Water Recycle on GHG Emissions90 92 94 96 98 100Energy(GHG)ProducedWater Recycle Rate (%)High TDSLow TDS*zero liquid dischargeEES Study:• Assess Impact of ZLD* on energyuseo Capital & operating costs• New technology opportunities• 9 Companies , ADOE, AENV, ERCB
  13. 13. 13Our Focus - Advanced Technologies to Decrease GHGEmissions and Water UseDecrease Fresh water UseDecreasingGHGEmissionsSAGD, CSSBest-in-class SAGDEnergy EfficiencySAGD, CSSSteam-solventElectrical heatingCombustionNon-aqueousExtractionSurface MinningEnergy Efficiencyrefining, miningCurrent5 - 10 years10 - 20 yearsCCSIn situ and Mining
  14. 14. 14Edmonton Waste Management Centre with MSWBiofuels FacilityBiofuelsFacilityAdvancedEnergyResearchFacilityCourtesy: City of Edmonton14
  15. 15. 15MSW 100 million t/yrEthanol 35 millionlitres/yearBiofuel Plant• 90% reduction of landfill• GHG reduction of more than• 3 t of CO2 per tonne of waste§ Eliminates methane emissions fromland sites§ Replacement of fossil fuel/coal§ CO2 removal and recovery• Meets renewable fuel mandatesAdvantages of Biofuel Plant15
  16. 16. 16Advanced Gasification & Syngas Plug-and-PlayPilot & Bench Scale R&D Facility• R&D for Biofuels Industry, universities & other initiatives• Test biofuels, coal, coke and fossil-biomass blends• Evaluate advanced membrane processes- O2, CO2, H2• R&D on advanced syngas conversion processes• Unique facilities can attract global playersGasifierFeedSystemSyngasCleanupSyngasReformerAcid gasremovalCO2RecoveryMethanolSynthesisBench-scaleResearchFacility
  17. 17. 17Long-Range Energy Alternatives Planning (LEAP) System• Evaluation tool for integrated resource planning and assessingGHG mitigation impact based on set assessments/scenariosDemandHouse holdCommercialIndustrialAgriculturalSingle detachedSingle attachedApartmentMobile homeconstructionSmelting and RefiningPetroleum refiningCementChemicalIron and SteelOther ManufacturingForestryMiningPaper and pulpSpace heatingWater heatingLighting-ElectricitySpace coolingAppliancesSpace heatingWater heatingLightingSpace coolingAppliancesRefrigeratorFreezerDishwasherWasherDryerRangeothersTransportationPassengerFreightPipelineDemandHouse holdCommercialIndustrialAgriculturalSingle detachedSingle attachedApartmentMobile homeconstructionSmelting and RefiningPetroleum refiningCementChemicalIron and SteelOther ManufacturingForestryMiningPaper and pulpSpace heatingWater heatingLighting-ElectricitySpace coolingAppliancesSpace heatingWater heatingLightingSpace coolingAppliancesRefrigeratorFreezerDishwasherWasherDryerRangeothersTransportationPassengerFreightPipeline 17
  18. 18. 18Example – Household SectorSpace heatingWater heatingLightingAppliancesElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectricityElectricityNGHouse holdSingle DetachedSingle attachedApartmentMobileSpace heatingWater heatingLightingAppliancesSpace heatingWater heatingLighting-ElectricitySpace cooling-ElectricityAppliancesSpace heatingWater heatingLightingAppliancesRefrigeratorFreezerDishwasherWasherDryerRangeothersElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceSteamElectricityElectricityElectricityNGElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectricityElectricityNGSpace heatingWater heatingLightingAppliancesElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectricityElectricityNGElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectricityElectricityNGElectricityElectricityNGHouse holdHouse holdSingle DetachedSingle attachedApartmentMobileSpace heatingWater heatingLightingAppliancesSpace heatingWater heatingLightingAppliancesSpace heatingWater heatingLighting-ElectricitySpace cooling-ElectricityAppliancesSpace heatingWater heatingLighting-ElectricitySpace cooling-ElectricityAppliancesSpace heatingWater heatingLightingAppliancesSpace heatingWater heatingLightingAppliancesRefrigeratorFreezerDishwasherWasherDryerRangeothersElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceSteamElectricityElectricityElectricityNGRefrigeratorFreezerDishwasherWasherDryerRangeothersElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceSteamElectricityElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceSteamElectricityElectricityElectricityNGElectricityElectricityNGElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectricityElectricityNGElectric furnaceNG furnaceHeating oil furnaceOthersWood furnaceRefrigeratorFreezerDishwasherWasherDryerRangeothersElectricityElectricityNGElectricityElectricityElectricityNGElectricityNG18
  19. 19. Resource Availability &Environmental ImplicationsuNear Term Resources:“There are sufficient reserves of most types ofenergy resources to last at least severaldecades at current rates of use” … IPCCuEnvironment: A major and growing issue19
  20. 20. Energy TrendsuProjections are based on the scenarios of theWorld Energy Council/IIASA and extend to 2100uDrivers are:u Population – 10.06 Billion in 2050, 11.65 by 2100u Economic Activity - $75 to 100 B depending onscenariou Technology choices - especially acceptability of coaland nuclearuThree broad scenarios – A, high growth; B,“business as usual”; C, ecologically driven20
  21. 21. Energy History and Projections010.00020.00030.00040.00050.00060.00070.0001850 1900 1950 2000 2050 2100YearABCGWth21
  22. 22. Representative ScenariosuThree of the WEC/IIASA scenarios chosen toillustrate a range of possible energy futures:B - BAUA2 - highest emissions scenarioC1 - least use of nuclear22
  23. 23. Environmental OutlookuOnly the “Ecologically-Driven” scenariosreduce emissions significantlyuNet emissions of energy-related Carbon arereduced to tolerable levels by 2100uAtmospheric CO2 concentration by 2100stabilizes in the range of 450 to 550 ppmuThis concentration should limit warming totwo to three degrees CuEach of these has its own particular makeupof energy sources23
  24. 24. Energy Share by Source - B0%20%40%60%80%100%1850 1900 1950 2000 2050 2100OtherBiomassSolarNuclearHydroGasOilCoalTraditionalYear24
  25. 25. 25
  26. 26. LEDAKAN PENDUDUK180019301959197419871999130 th30 th15 th13 th12 th250 JTPerkembangan Penduduk DuniaSEB. MASEHI MASEHI201112 th26
  27. 27. 02550751001251501752002251600 17001800 19002000205 JT18.314.210.840.2250275300285 jtKELAHIRANTERCEGAH80 JUTAPERKEMBANGAN PENDUDUK INDONESIA(JUTA)KELAHIRANTERCEGAH100 JUTA330 jt237.8 JT2010248.6 JT20135 x lipat2 x lipatJUTA JIWATAHUN27
  28. 28. Penduduk Indonesia : Young populationSumber: http://www.economist.com/blogs/dailychart?page=1&fsrc=scn/fb/wl/bl/dailychartjan10 (20101120_WOC951)IndonesiaKondisi kependudukan IndonesiaKelompok usia produktif15-64 tahun mencapai 66 %atau 165 jutaMerupakan kesempatandan peluang konsumsi yangluar biasa besar dan lajupertumbuhannya cukuptinggiKelompok dibawah 15tahun yang cukup besar :70 juta66%28%6%28
  29. 29. LingkupKomoditi“Policy Paper” Undang-undang “Blueprints”Program5 THN 1 THNEnergiBatubaraMinyak BumiGas BumiEnergiTerbarukanPanas BumiNuklirListrikMATRIKS KEBIJAKAN, REGULASI DAN PROGRAMENERGIKebijakan BatubaraNasionalKebijakan MigasNasionalPolicy on Ren. Energy& Energy Conserv.2 Januari 2004Kebijakan PanasbumiPower SectorRestructuring Policy25 Agustus 1998RUU Mineraldan BatubaraUU 22/2001ttg MIGAS23 November 2001Masuk dalam RUU(Pemanfaatan) EnergiUU 27/200322 Oktober 2003ttg Panas BumiRUU Ketenagalistrikan(menggantikan UUNo.20/2002)Roadmap Mineraldan BatubaraBlueprintPengembangan IndustriMinyak dan Gas BumiNasionalRoadmap Energi HijauBlueprintPengembangan danPemanfaatan EnergiPanas BumiRUKN danRevisi Blueprintyang berdasarkanUU No.20/2002Kebijakan EnergiNasional(Makro)RUU EnergiBlueprintPengembangan IndustriEnergi NasionalKebijakanKetenaganukliranUU 10/1997ttg KetenaganukliranRoadmapKetenaganukliranDIPADAFTARISIANPELAKSANAANANGGARANRENSTRA(RENCANASTRATEGIS)SEKTOR ESDM29
  30. 30. KondisiIndustriEnergiSaat Ini2005SUBJEK (S) OBJEK (O) METODA (M)DPRMenko PerekonomianDepartemen ESDMDepartemen PerhubunganDepartemen PerindustrianDepartemen KeuanganKementerian RistekDepartemen KehutananKementerian LHPerusahaan Energi• Perusahaan Migas• Perusahaan Listrik• Perusahaan TambangBB• Perusahaan JasaKonservasi EnergiPemerintah DaerahMasyarakat• Hak Budget• Koordinasi• Regulasi Energi• Regulasi ModaAngkutan• Regulasi Industri• Regulasi Fiskal• Kebijakan Teknologi• Regulasi Kehutanan• Kebijakan Lingkungan• Ketersediaan Migas• Energi Primer• KetersediaanBatubara• Jasa KonservasiEnergi• Regulasi• Kesadaran• Pengetatan Anggaran Subsidi• Pengembangan Infrastruktur• Perencanaan dan Pengembangan InfrastrukturEnergi• Intensifikasi Eksplorasi Sumber Energi• Diversifikasi dan Konservasi Energi• Pengawasan Biaya Pokok Penyediaan Energi• Rasionalisasi Harga Energi• Kebijakan Domestic Market Obligation (DMO)• Perencanaan Umum Energi Nasional• Elektrifikasi Kereta Api• Penggunaan Bahan Bakar Gas untukTransportasi• Pengembangan Transportasi Massa• Efisiensi Penggunaan Energi• Insentif Fiskal untuk EBT dan Peralatan HematEnergi• Pengembangan Teknologi Produksi danpemanfaatan energi yang efisien• Sinkronisasi Peruntukan Wilayah Hutan Lindungdan Pertambangan• Rasionalisasi Baku mutu Lingkungan• Penyediaan dan Distribusi Migas• Penggunaan Pembangkit Listrik Non–Minyak• Peningkatan Produksi• Penyediaan Jasa• Kendaraan Umum (Non–BBM)• Hemat Energi (BBM)PARADIGMA NASIONAL• PANCASILA• UUD 1945• UU No. 22/2001 ttg Minyak dan Gas Bumi• UU No. 27/2003 ttg Panas Bumi• UU No. 15/1985 ttg Ketenagalistrikan• UU No. 36/2004 ttg APBN 2005POLA PIKIRPENGELOLAAN INDUSTRI ENERGI NASIONALPengaruh Lingkungan StrategisNasional Regional Global• Otonomi Daerah •TAGP•ASEAN GRID• Harga Energi Internasional• Liberalisasi Sektor EnergiKondisiIndustriEnergi yangDiinginkan2020TujuanNasionalPengelolaanindustrienergibelumoptimalPengelolaanindustri energioptimal30
  31. 31. Grissik PalembangSemarangCADANGAN DAN JARINGAN PIPA GASPacific OceanAUSTRALIAIndian OceanBangkokPhnom PenhBan MabtapudHo Chi MinhCityCAMBODIAVIETNAMTHAILAND LAOSKhanonSongkhlaErawanBangkotLawitJernehWESTMALAYSIAPenangKertehKualaLumpurManilaPhilipinesSouthChinaSeaNatunaAlphaKota KinibaluBRUNEIBandaraSeri BegawanBintuluEASTMALAYSIAKuchingBanda AcehLhokseumaweMedanDuriPadangJambiBintanSINGAPORESamarindaBalikpapanBontang LNG Plant& Export TerminalAttakaTunuBekapaiKALIMANTANBanjarmasinManadoSULAWESIUjung PandangBURU SERAMTernateHALMAHERASorongIRIAN JAYAJakartaJ A V A SurabayaBangkalanBALI SUMBAWAPagerunganLOMBOKCirebonFLORESSUMBATIMORI N D O N E S I ADuyongWestNatunaPort DicksonPort KlangMogpuDumaiBatamGuntong52,0813,8967283,22014,2605,19031,8143,65414,782GAS RESERVE 2P (BSCF)TOTAL RESERVES2P : 134,015.5 BSCF0,113,00ResourcesArdjuna FieldsMADURA4,289ExistingPipelinePlannedPipelineJayapuraMerauke31
  32. 32. Grissik PalembangSemarangPacific OceanAUSTRALIAIndian OceanBangkokPhnom PenhBan MabtapudHo Chi MinhCityCAMBODIAVIETNAMTHAILAND LAOSKhanonSongkhlaErawanBangkotLawitJernehWESTMALAYSIAPenangKertehKualaLumpurManilaPhilipinesSouthChinaSeaNatunaAlphaKota KinibaluBRUNEIBandaraSeri BegawanBintuluEASTMALAYSIAKuchingBanda AcehLhokseumaweMedanDuriPadangJambiBintanSINGAPORESamarindaBalikpapanBontangAttakaTunuBekapaiKALIMANTANBanjarmasinManadoSULAWESIUjung PandangBURU SERAMTernateHALMAHERASorongIRIAN JAYAJakartaJ A V A SurabayaBangkalanBALI SUMBAWAPagerunganLOMBOKFLORESSUMBATIMORI N D O N E S I ADuyongWestNatunaPort DicksonPort KlangMogpuDumaiBatamGuntongMADURAPEMBANGKIT DAN TRANSMISI UTAMA LISTRIKTOTALCAPACITY24,000 MWTotal Jawa Bali : 18,500MWTotal Sumatera : 3,200MWTotal Kalimantan : 800 MWTotal Sulawesi : 650MWExistingTransmissionPlannedTransmissionPower PlantJayapuraMerauke32
  33. 33. PROYEKSI NERACA MINYAK BUMI0.0100.0200.0300.0400.0500.0600.02002200320042005200620072008200920102011201220132014201520162017201820192020JutaSBMProduksi-BAU Ekspor-BAU Impor-Skenario Gas & CoalImpor-BAU Impor-Skenario Efisiensi Produksi-Skenario FiskalEkspor-Skenario Fiskal 33
  34. 34. ENERGI MIX NASIONAL TAHUN 2020(SKENARIO OPTIMALISASI)Panas bumi5%PLTA4%Batubara38%Gas bumi39%Minyak bumi10%Nuklir1.231%Biomassa0.850%Fuel cell0.000%Tenaga angin0.000%Tenaga surya0.003%PLTMH0.308%Biofuel1.516%EBT Lainnya4%SASARAN ENERGI MIX NASIONAL 2020ENERGI MIX NASIONAL TAHUN 2000Batubara11%Gas bumi31%Minyak bumi53%Tenaga air4%Panas bumi1%ENERGI MIX NASIONAL TAHUN 2020(SKENARIO BaU)Batubara34%Gas bumi26%Minyak bumi35%Tenaga air4%Panas bumi1%OPTIMALISASIPENGELOLAANENERGI34
  35. 35. -10.020.030.040.050.060.02000 2005 2010 2015 2020%SASARAN OPTIMALISASI PENGELOLAANENERGI NASIONALMINYAK BUMIGAS BUMIBATUBARAEBT LAINNYAPANAS BUMITENAGAAIREKSPEKTASIBusiness as Usual40%38%10%5%4%Upaya IUpayaIIUpaya IIIUpaya IV Upaya V35
  36. 36. LAMPIRAN LUPAYA OPTIMALISASI• Upaya I : Mengurangi Minyak Bumi– Coal liquefaction– Pricing policy BBM– Alternatif energi– Pajak BBM– Kebijakan Fiskal• Upaya II : Meningkatkan Gas Bumi– Perubahan paradigma penggunaan cadangan sehingga baik cadangan besar ataupunkecil dapat dimanfaatkan untuk kebutuhan domestik– Cadangan gas tidak ada masalah untuk memenuhi kebutuhan ekspor dan dalamnegeri (dalam UU Migas ada konsep mengenai DMO gas)– Pricing policy BBM– Pricing policy Gas– Pembangunan infrastruktur gas• Upaya III : Meningkatkan Batubara– Cadangan batubara tidak ada masalah untuk memenuhi kebutuhan ekspor dan dalamnegeri– Penetapan DMO terhadap batubara, termasuk pemberian insentif untuk mendorongpenggunaan coal liquefaction• Upaya IV : Meningkatkan Panas Bumi– Potensi panas bumi tidak ada masalah untuk memenuhi kebutuhan listrik• Upaya V : Meningkatkan EBT Lainnya36
  37. 37. Energy Share by Source – C10%20%40%60%80%100%1850 1900 1950 2000 2050 2100OtherBiomassSolarNuclearHydroGasOilCoalTraditionalYear37
  38. 38. Outlook for Resource AvailabilityuWEC projects adequate resource availabilityover the next 100 years, but foresees that ashift in sources will be driven by:u Environmental impactsu Economic recoverability of the resources38
  39. 39. Net Carbon Emissions from Energy05000100001500020000250001990 2010 2030 2050 2070 2090MtCYearA2BC139
  40. 40. Approaches To StabilizingGHG EmissionsuThere are two fundamental approaches on theenergy front:u Reducing the impact of fossil fuels, i.e.,“Decarbonizing” themu Expanding the use of renewables or nuclearNote: there are other ways of influencingclimate, including various forms ofGeo/Climate engineering40
  41. 41. Decarbonizing Fossil FuelsuApproaches include:u Shifting to lower carbon fuels, e.g., gas vs. coalu Improving the efficiency of use of such fuelsu Capturing and sequestering the carbon (CCS):u“upstream” in the supply process, oru “downstream” in the utilization processuThese measures are necessary but notsufficient – major expansion in the supplyfrom renewable sources is vital41
  42. 42. RenewablesuRenewable sources include: hydro, biomass,solar, wind, geothermal and various formsof ocean/tidal/wave energyuEach has its own peculiar advantages anddrawbacksuOnly some can be exploited at a scale andin a time frame that will make a significantcontribution42
  43. 43. Sources Viewed as LimiteduHydro – only modest scope for expansionuBiomass – important for fuels, but limited bycompetition for landuGeothermal - locally important, but not alarge-scale source unless the “EngineeredGeothermal Systems” approach can bedeveloped successfullyuOcean/tidal/wave - resources are immenseyet diffuse and expensive to exploit43
  44. 44. Nuclear OutlookuNuclear suffers from concerns over publicacceptance, final waste management andproliferation riskuLittle capacity is being added in the OECDcountries and some is being removeduHowever, China, Russia and India haveambitious programsuMore widespread use may be needed to meetemissions targets44
  45. 45. Significant Renewables:Solar and WinduTotal energy available from these sources isimmense, but the energy density is lowuProduct is largely electricity, the most usefulform of energyuThe C1 scenario projects that these sources,along with biomass for fuels, will be thedominant sources of the future45
  46. 46. Electricity from Solar and Wind0200040006000800010000120001400016000180001990 2010 2030 2050 2070 2090SolarWindYearTWhr46
  47. 47. 47
  48. 48. The Matter of IntermittencyuIt is critical to recognize that solar and windare intermittent sources and can be usedimmediately by the power grid only to theextent of 20 - 25% of productionuSolar and wind can be more fully exploitedto meet base load needs if storage can beprovided or if the electricity is used togenerate hydrogen48
  49. 49. Electricity from Solar and Wind:Extent of Immediate Use010000200003000040000500001990 2040 2090TWhrYear25% of TotalStoredTotalElectricityElectricity fromSolar + Wind49
  50. 50. Cost Impact of IntermittencyuSolar and wind installations with storage (toserve base load needs) will be more expensivethan those providing peak poweruCapital costs, by mid-century, of such plants isestimated at ≈ $7000 per KWeuIncremental investment to accommodate thisintermittency is estimated at ≈ $1T per yearbeginning around 2040 (just over 1% of GWP)50
  51. 51. Energy InvestmentsuRecent capital expenditures ≈ 1% of GWPuImplementing energy scenarios that reduceemissions significantly will be more costlyuStern Report documents cost estimates at1% of GWP by 2050 to stabilize atmosphericconcentration of CO2 at 500-550ppmuWEC notes costs unlikely to exceed 2% ofGWP51
  52. 52. Outlook for Space Solar PoweruCapital costs for Space Solar Powerinstallations are estimated to be on the orderof $4000 per KWeuIf terrestrial installations for solar and windproviding base load power run $7,000 perKWe and a Trillion dollars a year is needed tobuild the needed capacity, then Space SolarPower should be very competitive52
  53. 53. An AssessmentuImplementing an energy future such as C1 willbe extremely challenging, requiring:u Enormous investmentsu Strong environmental policiesu Continuing international cooperation for decadesuConsequences of failing to follow such a path:u Serious climate impacts oru Expansion of nuclear supply and/oru Resort to more use of fossil fuels53
  54. 54. What Could Change This Picture?uCheaper ways to store electricityuPower grids of international scaleuEconomic means of exploiting geothermal orocean energyuSuccess in exploiting nuclear fusion54
  55. 55. RecommendationsuPromote a better general understanding ofthe world energy situationuSupport all plausible sources of sustainableand clean energy, especially Space SolarPoweruSupport policy actions that reduce emissions,importantly, putting a price on carbonuSupport policy actions that improve efficiencyuStart now55
  56. 56. Take AwayuEnergy demand will continue to grow stronglyuAlternatives to “Business as Usual” can limitemissions to acceptable levelsuRenewable sources will dominateuInvestments need to be largeuStrong environmental policies will be requireduSpace Solar Power will be competitive56
  57. 57. Reduction in World Oil Demand in theAlternative vs. Reference Scenario, 2030Transport64%Other4%Industry13%Power generation8%Residential andservices11%Oil savings = 12.8 mb/dOil savings in 2030 would be equivalent to the combinedcurrent production of Saudi Arabia, UAE and Nigeria
  58. 58. World Primary Energy DemandFossil fuels account for almost 90% of the growth in energydemand between now and 2030OilNatural gasCoalNuclear powerHydro powerOther renewables01 0002 0003 0004 0005 0006 0007 0001970 1980 1990 2000 2010 2020 2030Mtoe01 0002 0003 0004 0005 0006 0007 0001970 1980 1990 2000 2010 2020 2030Mtoe
  59. 59. 04 0008 00012 00016 00020 0001970 1980 1990 2000 2010 2020 2030MtofCO2OECD Transition economies Developing countriesGlobal emissions grow 62% between 2002 & 2030, anddeveloping countries’ emissions will overtake OECD’s in the 2020sWorld Energy-Related CO2 Emissions
  60. 60. Growth in World Energy Demandand CO2 EmissionsAverage carbon content of primary energy increasesslightly through 2030 – in contrast to past trends0.0%0.5%1.0%1.5%2.0%2.5%1971-2002 2002-2030averageannualgrowthratePrimary energy demand CO2 Emissions
  61. 61. Net Natural Gas Imports, 2030Net gas imports are lower in all major importing regions,except China0200400600OECD NorthAmericaOECD Europe OECD Asia ChinabcmReference Scenario Alternative Scenario
  62. 62. OECD CO2 Emissions in the Referenceand Alternative ScenariosOECD CO2 emissions peak around 2020 – 25% higher than in1990Alternative Scenario11 00012 00013 00014 00015 00016 0001990 2000 2010 2020 2030MtofCO2Reference Scenario
  63. 63. Contributory Factors in CO2 Reduction2002-2030Improvements in end-use efficiency contribute for more thanhalf of decrease in emissions, and renewables use for 20%0%20%40%60%80%100%49%10%21%12%8%OECD63%1%21%15%Transition economies67%7%17%5%4%Developing countries58%WorldEnd-use efficiency gains7%Fuel switching in end uses20%Increased renewables in power generation10%Increased nuclear in power generation5%Changes in the fossil-fuel mix in power generation
  64. 64. Difference in Electricity Investment inthe Alternative vs. Reference Scenario2003-2030Additional investments on the demand side are more than offset bylower investment on the supply side-2 000-1 500-1 000- 50005001 000billiondollars(2000)DifferenceAdditional demand-sideinvestmentEfficiencymeasures Avoided supply-sideinvestmentGenerationTransmissionDistribution
  65. 65. Ocean EnergylPotensi luasan laut dan samuderabelum banyak dijadikan sumberenergy terbarukanlPerubahan ke Blue Economy :memanfaatkan seluruh potensikelautan termasuk untuk food danenergylMendorong pemanfaatan terintegrasi
  66. 66. HIGH-TECHAQUACULTUREOCEAN ENERGYROBOTICSADVANCED SEABED MAPPINGDEEP-SEA FRONTIERSENSORS &REMOTEAcknowledgement: Prof John DelaneyUniv WashingtonA dynamic maritime economy, in harmonywith the environment; supported bysound science and technology, whichallows human beings to continue to reapthe rich harvest from the oceans in asustainable manner.Integrated Maritime Policy for the EU (2007)
  67. 67. Apa yang harus dimulail Renewable energy integrationl Transportation strategy restructuringl New strategy for product, process andequipment utlising renewable energyl Waste treatment and managementl Energy pedesaan dan energy pada agroindustryl Industri dan rumah tangga bermigrasi kegasl Peningkatan produktivitas secaramenyeluruh dalam berbagai sektor terkait
  68. 68. Basel: a city with a vision44% of households car-free"2000 watt society – Basel pilot regio
  69. 69. Vauban District, Tram serviced, passiveand net energy producing homesFreiburg
  70. 70. Thermal solar for newand retrofitted buildingsBarcelona
  71. 71. OdensePopulation 185,00035 milion cycle trips in4 years (30%+)
  72. 72. Space Required to Transport Same Number of PassengersWhy Public Transit?Source: GTZ (2009), Sustainable Urban Transport: A Sourcebook for Policy-makers in South Asian Cities
  73. 73. TRANSPORTATION DEVELOPMENT IN SURABAYA
  74. 74. East - WestVisualisasi Monorail Jl. Hr Muhammad (patung Kuda)
  75. 75. North - SouthVisualisasi Tram Jl. Raya Darmo
  76. 76. Kesadaran Lingkungan• Pengembangan kesadaran lingkungan harusterintegrasi dengan proses pembelajaran,perubahan perilaku dan penghitungan costsecara terpadu• Research and development to integrateenergy and environment. Creative economy• Pengembangan energy terbarukan harusdilakukan secara cepat, radikal, massiv danpunya pertimbangan komersial
  77. 77. END OF SLIDESTHANK YOUKresnayana YahyaEmail: kresna49@yahoo.comBlog: http://www.kresnayana.com82Enciety Business Consult

×