0
The Equation of the Target Line on a Circle Group 6 Audi Renata Fajri Parmi Junia Handayanis LupitaYessica
<ul><li>Equation of the Tangent Line on a circle through point of T (x,y) </li></ul><ul><li>With center of (0,0) </li></ul...
<ul><li>So, </li></ul><ul><li>Because point T(x 1 ,y 1 ) is  located inside the circle  x 2 +y 2 =r 2  .....(2) substitute...
<ul><li>With center of P (a,b) </li></ul>P(a,b) r T(x,y) x y 0
<ul><li>Gradient  line of  TP  is  m TP  = </li></ul><ul><li>Tangent line of  h  is perpendicular with line  TP,  so   the...
<ul><li>Equation of tangent line  h  is  : </li></ul>
<ul><li>because  T(x1,y1)  on </li></ul><ul><li>L </li></ul><ul><li>So it occures :  </li></ul>
<ul><li>then  sub stitute   equation  (1)  and  (2) </li></ul><ul><li>Based on above description ,  the tangent line equat...
Example <ul><li>Determine the equestion of the tangent line to the circle: </li></ul><ul><li>X 2 +y 2 =5 at point (-2,1) <...
<ul><li>a. X 2 +y 2 =5 at point (-2,1)   </li></ul>
<ul><li>b. (x+2) 2 +(y+3) 2 =40 at point of(4,-1) </li></ul>
Upcoming SlideShare
Loading in...5
×

Kelompok 6

288

Published on

It's talk about The Equation of the Target Line on a Circle

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
288
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Kelompok 6"

  1. 1. The Equation of the Target Line on a Circle Group 6 Audi Renata Fajri Parmi Junia Handayanis LupitaYessica
  2. 2. <ul><li>Equation of the Tangent Line on a circle through point of T (x,y) </li></ul><ul><li>With center of (0,0) </li></ul><ul><li>Gradient TO, m TO = </li></ul><ul><li>Gradient h, m h = - </li></ul>O T(x,y) h
  3. 3. <ul><li>So, </li></ul><ul><li>Because point T(x 1 ,y 1 ) is located inside the circle x 2 +y 2 =r 2 .....(2) substitute equation (1) and (2) </li></ul>
  4. 4. <ul><li>With center of P (a,b) </li></ul>P(a,b) r T(x,y) x y 0
  5. 5. <ul><li>Gradient line of TP is m TP = </li></ul><ul><li>Tangent line of h is perpendicular with line TP, so the gradient tangent line h : </li></ul>
  6. 6. <ul><li>Equation of tangent line h is : </li></ul>
  7. 7. <ul><li>because T(x1,y1) on </li></ul><ul><li>L </li></ul><ul><li>So it occures : </li></ul>
  8. 8. <ul><li>then sub stitute equation (1) and (2) </li></ul><ul><li>Based on above description , the tangent line equation on circle L </li></ul><ul><li>pass through the tangent point T(x 1 ,y 1 ) </li></ul><ul><li>found with : </li></ul>
  9. 9. Example <ul><li>Determine the equestion of the tangent line to the circle: </li></ul><ul><li>X 2 +y 2 =5 at point (-2,1) </li></ul><ul><li>(x+2) 2 +(y+3) 2 =40 at point of(4,-1) </li></ul>
  10. 10. <ul><li>a. X 2 +y 2 =5 at point (-2,1) </li></ul>
  11. 11. <ul><li>b. (x+2) 2 +(y+3) 2 =40 at point of(4,-1) </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×