Like this presentation? Why not share!

# Angles in a Triangle

## on Sep 06, 2010

• 1,010 views

### Views

Total Views
1,010
Views on SlideShare
1,010
Embed Views
0

Likes
0
6
0

No embeds

### Report content

• Comment goes here.
Are you sure you want to

## Angles in a TrianglePresentation Transcript

• Apply angle properties to find the measure of the missing angle in each figure. °
• x = 27°
Isosceles Triangle Theorem
• Round 1
• x = 123°
linear pair
• x = 41°
vertical angle
• x = 40°
same side exterior angles
• x = 41°
complementary
• x = 68.5°
Isosceles Triangle Theorem
• x = 61°
same side interior angles
• Round 2
• x = 60°
equiangular
• x = 121°
vertical angle
• x = 148°
alternate interior angles
• x = 135°
alternate exterior angles
• x = 48°
Isosceles Triangle Theorem
• x = 35°
complementary
• Round 3
• x = 45°
Isosceles Triangle Theorem
• x = 127°
corresponding angles
• x = 74°
Isosceles Triangle Theorem
• x = 40°
triangle angle sum theorem
• x = 40°
Isosceles Triangle Theorem
• x = 93°
linear pair
• Individual speed test(1 minute per item)
Round 4
• No. 1
• No. 2
• No. 3
• No. 4
• No. 5
• No. 6
• No. 7
• No. 8
• No. 9
• No. 10
• No. 1
x = 30°
60°
30°
30°
60°
60°
120°
• No. 2
x = 75°
60°
45°
75°
60°
45°
60°
• No. 3
60°
60°
60°
60°
30°
x = 30°
• No. 4
x = 15°
45°
15°
135°
45°
• No. 5
x = 36°
36°
36°
108°
72°
72°
• No. 6
39.5°
x = 39.5°
101°
79°
39.5°
79°
• No. 7
60°
x = 75°
45°
60°
45°
60°
45°
60°
75°
• No. 8
30°
60°
60°
60°
60°
x = 30°
• No. 9
60°
45°
60°
60°
45°
45°
60°
75°
x = 75°
75°
30°
• No. 10
30°
x = 30°
30°
120°
60°
60°
60°
60°
60°
60°
• www.slideshare.net/teacherfidel