Your SlideShare is downloading. ×
0
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Relations and Functions

12,250

Published on

0 Comments
7 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
12,250
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
404
Comments
0
Likes
7
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Relations and Functions .
  • 2. What is a Relation? <ul><li>A relation is a set of ordered pairs. </li></ul><ul><li>When you group two or more points in a set, it is </li></ul><ul><li>referred to as a relation. When you want to show that a </li></ul><ul><li>set of points is a relation you list the points in braces. </li></ul><ul><li>For example, if I want to show that the points (-3,1) ; </li></ul><ul><li>(0, 2) ; (3, 3) ; & (6, 4) are a relation, it would be written </li></ul><ul><li>like this: </li></ul><ul><li>{(-3,1) ; (0, 2) ; (3, 3) ; (6, 4)} </li></ul><ul><li>……… . </li></ul>
  • 3. Domain and Range <ul><li>Each ordered pair has two parts, an x-value </li></ul><ul><li>and a y-value. </li></ul><ul><li>The x-values of a given relation are called the </li></ul><ul><li>Domain . </li></ul><ul><li>The y-values of the relation are called the </li></ul><ul><li>Range . </li></ul><ul><li>When you list the domain and range of </li></ul><ul><li>relation, you place each the domain and the </li></ul><ul><li>range in a separate set of braces. </li></ul><ul><li>……… . </li></ul>
  • 4. For Example, <ul><li>1. List the domain and the range of the relation </li></ul><ul><li>{(-3,1) ; (0, 2) ; (3, 3) ; (6, 4)} </li></ul><ul><li>Domain: { -3, 0, 3, 6} Range: {1, 2, 3, 4} </li></ul><ul><li>2. List the domain and the range of the relation </li></ul><ul><li>{(-3,3) ; (0, 2) ; (3, 3) ; (6, 4) ; ( 7, 7)} </li></ul><ul><li>Domain: {-3, 0, 3, 6, 7} Range: {3, 2, 4, 7} </li></ul><ul><li>Notice! Even though the number 3 is listed twice in the </li></ul><ul><li>relation, you only note the number once when you list the </li></ul><ul><li>domain or range! </li></ul><ul><li>……… . </li></ul>
  • 5. What is a Function? <ul><li>A function is a relation that assigns each </li></ul><ul><li>y-value only one x-value. </li></ul><ul><li>What does that mean? It means, in order for the </li></ul><ul><li>relation to be considered a function, there cannot be </li></ul><ul><li>any repeated values in the domain. </li></ul><ul><li>There are two ways to see if a relation is a function: </li></ul><ul><ul><ul><ul><ul><li>Vertical Line Test </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Mappings </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>……… . </li></ul></ul></ul></ul></ul>
  • 6. Using the Vertical Line Test <ul><li>Use the vertical line test to check </li></ul><ul><li>if the relation is a function only if </li></ul><ul><li>the relation is already graphed. </li></ul><ul><li>Hold a straightedge (pen, ruler, </li></ul><ul><li>etc) vertical to your graph. </li></ul><ul><li>Drag the straightedge from left </li></ul><ul><li>to right on the graph. </li></ul><ul><li>3. If the straightedge intersects </li></ul><ul><li>the graph once in each spot , </li></ul><ul><li>then it is a function. </li></ul><ul><li>If the straightedge intersects the </li></ul><ul><ul><li>graph more than once in any </li></ul></ul><ul><ul><li>spot, it is not a function. </li></ul></ul><ul><li>A function! </li></ul>……… .
  • 7. Examples of the Vertical Line Test function function Not a function Not a function ……… .
  • 8. Mappings <ul><li>If the relation is not graphed, it is easier to use what is called a mapping . </li></ul><ul><li>When you are creating a mapping of a relation, you </li></ul><ul><li>draw two ovals. </li></ul><ul><li>In one oval, list all the domain values. </li></ul><ul><li>In the other oval, list all the range values. </li></ul><ul><li>Draw a line connecting the pairs of domain and range </li></ul><ul><li>values. </li></ul><ul><li>If any domain value ‘maps’ to two different range </li></ul><ul><li>values, the relation is not a function. </li></ul><ul><li>It’s easier than it sounds  </li></ul><ul><li>……… . </li></ul>
  • 9. Example of a Mapping <ul><li>Create a mapping of the following relation and state whether or not it is a function. </li></ul><ul><li>{(-3,1) ; (0, 2) ; (3, 3) ; (6, 4)} </li></ul><ul><li>Steps </li></ul><ul><li>Draw ovals </li></ul><ul><li>List domain </li></ul><ul><li>List range </li></ul><ul><li>Draw lines to connect </li></ul>-3 0 3 6 1 2 3 4 This relation is a function because each x-value maps to only one y-value. ……… .
  • 10. Another Mapping <ul><li>Create a mapping of the following relation and state whether or not it is a function. </li></ul><ul><li>{(-1,2) ; (1, 2) ; (5, 3) ; (6, 8)} </li></ul>-1 1 5 6 2 3 8 Notice that even though there are two 2’s in the range, you only list the 2 once. This relation is a function because each x-value maps to only one y-value. It is still a function if two x-values go to the same y-value. ……… .
  • 11. Last Mapping <ul><li>Create a mapping of the following relation and state whether or not it is a function. </li></ul><ul><li>{(-4,-1) ; (-4, 0) ; (5, 1) ; (3, 9)} </li></ul>-4 5 3 -1 0 1 9 This relation is NOT a function because the (-4) maps to the (-1) & the (0). It is NOT a function if one x-value go to two different y-values. ……… . Make sure to list the (-4) only once!
  • 12. Vocabulary Review <ul><li>Relation : a set of order pairs. </li></ul><ul><li>Domain : the x-values in the relation. </li></ul><ul><li>Range : the y-values in the relation. </li></ul><ul><li>Function : a relation where each x-value is assigned (maps to) on one y-value. </li></ul><ul><li>Vertical Line Test : using a vertical straightedge to see if the relation is a function. </li></ul><ul><li>Mapping : a diagram used to see if the relation is a function. </li></ul><ul><li>……… . </li></ul>
  • 13. Practice (you will need to hit the spacebar to pull up the next slide) <ul><li>Complete the following questions and check your answers on the next slide. </li></ul><ul><li>Identify the domain and range of the following relations: </li></ul><ul><li>a. {(-4,-1) ; (-2, 2) ; (3, 1) ; (4, 2)} </li></ul><ul><li>b. {(0,-6) ; (1, 2) ; (7, -4) ; (1, 4)} </li></ul><ul><li>Graph the following relations and use the vertical line test to see if the relation is a function. Connect the pairs in the order given. </li></ul><ul><li>a. {(-3,-3) ; (0, 6) ; (3, -3)} </li></ul><ul><li>b. {(0,6) ; (3, 3) ; (0, 0)} </li></ul><ul><li>Use a mapping to see if the following relations are functions: </li></ul><ul><ul><ul><ul><li> a. {(-4,-1) ; (-2, 2) ; (3, 1) ; (4, 2)} </li></ul></ul></ul></ul><ul><li>b. {(0,-6) ; (1, 2) ; (7, -4) ; (1, 4)} </li></ul>
  • 14. Answers (you will need to hit the spacebar to pull up the next slide) <ul><li>1a. Domain: {-4, -2, 3, 4} Range: {-2, 2, 1} </li></ul><ul><li>1b. Domain: {0, 1, 7} Range: {-6, 2, -4, 4} </li></ul><ul><li>2a. 2b. </li></ul><ul><li>3a. 3b. </li></ul>Function Not a Function Function Not a Function -4 -2 3 4 -1 2 1 0 1 7 -6 2 -4 4
  • 15. One more thing… <ul><li>The equation that represents a function is called a function rule . </li></ul><ul><li>A function rule is written with two variables, x </li></ul><ul><li>and y. </li></ul><ul><li>It can also be written in function notation , f(x), </li></ul><ul><li>but we’ll talk about that on Thursday. </li></ul><ul><li>When you are given a function rule, you can </li></ul><ul><li>evaluate the function at a given domain value to find </li></ul><ul><li>the corresponding range value. </li></ul><ul><li>……… . </li></ul>
  • 16. How to Evaluate a Function Rule <ul><li>To evaluate a function rule, substitute the </li></ul><ul><li>value in for x and solve for y. </li></ul><ul><li>Examples </li></ul><ul><li>Evaluate the given function rules for x = 2 </li></ul><ul><li> </li></ul><ul><li> </li></ul>y= x + 5 y= 2x -1 y= -x + 2 y=(2)+ 5 y= 7 y=2(2)-1 y= 4 – 1 y= 3 y=-(2)+2 y= -2 + 2 y= 0 ……… .
  • 17. Evaluating for a given domain <ul><li>You can also be asked to find the range </li></ul><ul><li>values for a given domain. </li></ul><ul><li>This is the same as before, but now </li></ul><ul><li>you’re evaluating the same function rule for </li></ul><ul><li>more than one number. </li></ul><ul><li>The values that you are substituting in are x </li></ul><ul><li>values, so they are apart of the domain. </li></ul><ul><li>The values you are generating are y-values, </li></ul><ul><li>so they are apart of the range. </li></ul><ul><li>……… . </li></ul>
  • 18. Example <ul><li>Find the range values of the function </li></ul><ul><li>for the given domain. </li></ul><ul><li>y = -3x + 2 ; {-1, 0, 1, 2} </li></ul><ul><li>y = -3x + 2 y = -3x + 2 y = -3x + 2 y = -3x + 2 </li></ul><ul><li>y = -3(-1) + 2 y = -3(0) + 2 y = -3(1) + 2 y = -3(2) + 2 </li></ul><ul><li>y = 3 + 2 y = 0 + 2 y = -3 + 2 y = -6 +2 </li></ul><ul><li>y = 5 y = 2 y = -1 y = -4 </li></ul><ul><li>The range values for the given domain are { 5, 2, -1, -4}. </li></ul><ul><li>……… . </li></ul><ul><li>Steps </li></ul><ul><li>Sub in each domain value in one @ a time. </li></ul><ul><li>Solve for y in each </li></ul><ul><li>List y values in braces. </li></ul>
  • 19. One more example <ul><li>Find the range values of the function </li></ul><ul><li>for the given domain. </li></ul><ul><li>y = 5x - 7 ; {-3, -2, 4} </li></ul><ul><li>y = 5x -7 y = 5x -7 y = 5x - 7 </li></ul><ul><li>y = 5(-3) - 7 y= 5(-2) -7 y = 5(4) - 7 </li></ul><ul><li>y = -15 - 7 y= -10 - 7 y= 20 - 7 </li></ul><ul><li>y= -22 y= -17 y= 13 </li></ul><ul><li>The range values for the given domain are </li></ul><ul><li>{ -22, -17, 13}. </li></ul>……… .
  • 20. Practice (you’ll need to hit the spacebar to pull up the next slide) <ul><li>1. Find the range values of the function </li></ul><ul><li>for the given domain. </li></ul><ul><li>y = 3x + 1 ; {-4, 0, 2} </li></ul><ul><li>2. Find the range values of the function </li></ul><ul><li>for the given domain. </li></ul><ul><li>y = -2x + 3 ; {-5, -2, 6} </li></ul><ul><li>Steps </li></ul><ul><li>Sub in each domain value in one @ a time. </li></ul><ul><li>Solve for y in each </li></ul><ul><li>List y values in braces. </li></ul>
  • 21. Answers 1. 2. y = 3x + 1 y = 3(-4) + 1 y = -12 + 1 y = -11 y = 3x + 1 y = 3(0) + 1 y = 0 + 1 y = 1 Ans. { -11, 1, 7} y = 3x + 1 y = 3(2) + 1 y = 6 + 1 y = 7 y = -2x + 3 y = -2(-5) + 3 y = 10 + 3 y = 13 y = -2x + 3 y = -2(-2) + 3 y = 4 +3 y = 7 Ans. { 13, 7, -9} y = -2x + 3 y = -2(6) + 3 y = -12 +3 y = -9

×