Intro to Carbon Neutral Design (Mandarin translation)


Published on

Introduction to Carbon Neutral Design Concepts with Mandarin Translation.

Published in: Education, Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Typical Concrete Mix:Cement: 375kg/m3 (16%)Water: 180 kg/m3 (8%)Aggregates (fine + coarse): 1800 kg/m3 (76%)Total: 2355 kg/m3 (150lb/ft3)The CO2 emissions due to calcination are formed when the raw materials (mostly limestone and clay) are heated to over 2500°F and CO2 is liberated from the decomposed limestone. Also CO2 released in order to produce the energy (heat) to make cement
  • GWPOperating Energy: 91.42% Total Embodied Energy: 8.58% Windows & Doors: 1.62% Foundations: 2.05% Beams & Columns: 0.75% Enclosure: 4.16%
  • Trends in Greenhouse Gas (GHG) emissions closely parallel energy use. The majority of the
  • Intro to Carbon Neutral Design (Mandarin translation)

    1. 1. TOWARDS A CARBON NEUTRAL BUILDING ENVELOPE 打造零碳建筑围护结构 Terri Meyer Boake Full Professor | University of Waterloo Past President Society of Building Science Educators Past President Building Technology Educators’ Society Member Ontario Association of Architects Committee for Sustainable Built Environment
    2. 2. What is a Low Carbon Building Envelope? 什么是低碳建筑围护结构? A new skin on an old building? 在旧建筑上的新表皮? A skin that responds to the climate? 适宜当地气候的外墙 设计? A skin on a LEEDTM building? LEEDTM 建筑?
    3. 3. The LEAP to Zero Carbon and beyond… 走向零碳与超越…  Energy Efficient (mid 1970s “Oil Crisis” reaction) 节能设计(对70年代石油危机的回应) Green (environmentally responsive) 绿色设计(对环境保护的响应) Sustainable (holistic and comparable – LEEDTM) 可持续发展设计(全面,有可比性的-LEEDTM) High Performance (accountable) 高效设计(可说明效果的) Carbon Neutral (Zero Fossil Fuel Energy) 零碳设计(零矿物燃料能源) … increase in expectations of performance 越来越高的性能要求促使了设计的改革与更新
    4. 4. A building envelope that addresses Global Warming and Sustainable Design! 针对全球变暖与可持续设计的围护设计 • To reduce GHG emissions 减少温室效应气体的排放 • Buildings account for more than 40% of the GHG 40% 以上的温室气体排放源于建筑物 • Carbon Neutrality focuses on the relationship between all aspects of “buildings” and CO2 emissions 零碳设计理念将焦点放在建筑物与碳排放的关系 • Carbon Neutral Design strives to reverse trends in Global Warming 零碳设计将尽全力扭转全球变暖的趋势
    5. 5. This is NOT a low carbon envelope because: 这不是一个低碳围护结构,因为: - No consideration of orientation (shading missing) 欠缺朝向的考虑(缺少遮阳设备) - Ad hoc A/C units (waste heat causes warming) 外加的空调(排放的废气造成环境变暖) - Materials not durable 材料并不耐用
    6. 6. This is NOT a high performance low carbon envelope BUT: 这不是一个高效的低碳外墙,但是: - recessed windows can be shaded from sun 内缩窗可以起到遮阳的作用 - overhangs allow windows to be open when it is rainy 挑檐:在下雨天也可以开窗 - traditional clothes drying space preserved 保留了晾衣服的空间
    7. 7. Preserve the best of traditional buildings 保留传统建筑中的精华 - Not ALL traditional buildings are BAD 并非所有传统建筑都是坏的 - Not ALL Western buildings are GOOD 并非所有西方建筑都是好的
    8. 8. Operating Energy of Building Landscape + Site 建筑运作能耗 景观 + 场地 80% of the problem! 80%的问题 Disturbance vs. sequestration 干扰 v.s. 隔离 Embodied Carbon in Building Materials 建筑材料中的隐含 碳 People, “Use” + Transportation 人,功能,交通 Renewables + Site Generation 可再生资源 Counting Carbon costs…. + purchased offsets 计算碳成本… + 换取补偿
    9. 9. Operating Energy of Building 建筑运作能耗 80% of the problem! 80%的问题 Embodied Carbon in Building Materials 建筑材料中的隐 含碳 Building envelope performance directly impacts operating energy 建筑围护的性能对运作能 耗有着直接的影响 Building envelope material selection and sourcing directly impacts embodied energy 建筑围护材料的选择和来源对自含 能量有着直接的影响 Counting Carbon costs…. 计算碳成本…
    10. 10. Low Carbon Envelope Concerns 低碳围护结构设计的考虑 The primary issues of concern for the envelope are: 围护结构设计主要关心的问题: OPERATING ENERGY 运作能耗: Thermal Performance 保温性能 EMBODIED ENERGY 自含能量: Materiality 材料 Durability 耐久性 Sourcing – travel distance 来源-运输距离 Renewable? Recycled? Recyclable? 可再生的?可回收的?可再循环利用的?
    11. 11. Embodied Carbon in Building Materials 建筑材料中 的隐含碳 Embodied Energy in Envelopes 围护结构中的自含能量 – Initial Embodied Energy: Non-renewable energy consumed in the acquisition of raw materials, their processing, manufacturing, transportation to site, and construction 初始自含能量:消耗在获得原材料,加工,生产制造,运输和建造中的 不可再生能源 – Recurring Embodied Energy: Non-renewable energy consumed to maintain, repair, restore, refurbish or replace materials, components, or systems during life of building (DURABILITY) 续生自含能量:消耗在建筑使用寿命中用于保养,维修,修复,翻新或更 新材料,构件和系统的不可再生能源 (耐久性) 11
    12. 12. 建筑材料中 的隐含碳 Initial Embodied Energy of Building Materials Per Unit Mass 建筑材料中的初始自含能量 每单位质量 200 180 160 140 120 100 80 60 40 20 0 191.0 Embodied Energy (MJ/kg) 自含能量 Embodied Carbon in Building Materials Steel with recycled content can vary from about 10.0 to 25.0 MJ/kg 可回收钢材自含能量大约10.0至 25.0 MJ/kg不等 -Timber (air dried) 木材(风干): 0.3 MJ/kg - Plywood 胶合板: 10.4 MJ/kg 88.5 72.4 32.0 30.3 15.9 7.8 2.5 1.3 Aluminum (virgin) Based Paint Water Carpet Steel (general, virgin) Insulation Glass Cement (softwood, kiln dried)mix, 30M Fibreglass Float Timber Concrete (ready 地毯 铝 水性漆 浮法玻璃 钢 水泥 玻璃纤维保 温材料 Source: University of Wellington, NZ, Center for Building Performance Research (2004) 木材 混凝土 (软木,窑烘干) (预拌)
    13. 13. Embodied Carbon in Building Materials 建筑材料中 的隐含碳 The Life Cycle of a Material 材料的生命周期 Life-Cycle Assessment (LCA) 生命周期评估 – The main goal of a LCA is to quantify energy and material use as well as other environmental parameters at various stages of a product’s life-cycle including: resource extraction, manufacturing, construction, operation, and post-use disposal 生命周期评估的主要目的是量化一个产品在其生命周期中各个阶 段(包括原料提炼,制造,建造施工,运作和使用后的处理)所需的 能源,材料以及其他的环保参数。 – Need to justify use of High Embodied Energy materials 调整高自含能量材料的运用 – Durability is important 耐久性很重要 – Some materials need to be used for their Environmental benefit (like concrete for its ability to act as thermal mass) 巧妙运用有些材料的环保优势 (例:混凝土有蓄热的功效) 13
    14. 14. Embodied Carbon in Building Materials 建筑材料中 的隐含碳 The Life Cycle of a Material 材料的生命周期 Life-Cycle Inventory (LCI) Database 生命周期清单分析数据库 – A database that provides a cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with producing a material. This database is a critical component of a Life-Cycle Assessment 一个全面描述材料从“摇篮到坟墓”过程中所需能量,资源,和 对环境影响的数据库。这是生命周期评估中一个至关重要的组成 部分。 14
    15. 15. 建筑材料中 的隐含碳 Initial Embodied Energy vs. Recurring Embodied Energy of a Typical Canadian Office Building Constructed from Wood 典型木结构加拿大办公楼 初始自含能量与续生自含能量的对比 Finishes, Envelope, & Services dominate the embodied energy over the building’s lifespan 建筑饰面,围 护结构,和建 筑设备对整个 建筑寿命的自 含能量有着显 著的影响 645% 286% 自含能量 Embodied Carbon in Building Materials Energy in Common Building Components 常见建筑构件中的能耗 126% 建筑结构 场地施工 建造施工 建筑饰面 围护结构 建筑设备 Source: Cole , R. & Kernan, P. (1996). Life-Cycle Energy Use in Office Buildings. Building and Environment, 31 (4), 307-317
    16. 16. Embodied Carbon in Building Materials 建筑材料中 的隐含碳 Orders ofSE IN BUILDINGS Impact ENERGY U Environmental 对环境影响的顺序 Total Energy Breakdown of Typical Hot-Rolled Steel Retail Building After 50 Years (other building types are similar) 典型热轧钢结构零售建筑50年后总能量统计分析 (其他建筑类型相似) Energy & GWP 围护(墙,屋顶) 总运作能量 总自含能量 due to envelope is a significant contributor to embodied energy 因围护结构而产生 的能源与全球变暖 潜能值是促成自含 能量的主要因素 梁柱 门窗 地基 * GWP: Beams & Columns = 0.75% 全球变暖潜能值:梁与柱
    17. 17. Orders of Environmental Impact ENERGY USE IN BUILDINGS 对环境影响的顺序 Primary Energy Consumption vs. Time for Hot-Rolled Steel Retail Building (other building types are similar) 典型热轧钢结构零售建筑的原始能量与时间对比 (其他建筑类型相似) 总能量 总自含能量 总运作能量 总自含能量 总运作能量 运作能量 结构的自含能量 初始能量 总自含能量 总运作能量 结构的自含能量 自含能量 寿命(年) Source: Kevin Van Ootegham 结构的自含能量
    18. 18. Embodied Carbon in Building Materials Embodied Energy Findings 自含能量的调查结果 建筑材料中 的隐含碳 The building envelope (walls and roof), building services, and building finishes contribute the most towards the total embodied life-cycle energy. 建筑生命周期中的总自含能量主要决定于其围护结 构(墙和屋顶),建筑设备和建筑饰面。
    19. 19. Embodied Carbon in Building Materials 建筑材料中 的隐含碳 Embodied Energy Findings 自含能量的调查结果 To lower GHG, choice of envelope materials needs to reflect: 为减少温室气体排放,围护结构的选材需考虑到: - issues of DURABILITY 耐久性的问题 - ability of material to assist PASSIVE DESIGN 利用材料的性能促进被动式设计 - local sourcing to reduce TRANSPORTATION 利用本地材料减少交通运输 -ability of material to be 1st REUSED and 2nd RECYCLED 考虑可先再利用,然后再回收的材料
    20. 20. Operating Energy 运作能耗 Four Key Steps – IN ORDER: 四个关键步骤-按顺序 #1 - Reduce loads/demand first (conservation, passive design, daylighting, shading, orientation, etc.) 减少负荷/需求(能量保存,被动式设计,天然采光,遮 阳,朝向,等。) #2 - Meet loads efficiently and effectively (energy efficient lighting, high-efficiency MEP equipment, controls, etc.) 有效的满足负荷 (节能照明,高效水电风设备,控制管理,等。) #3 - Use renewables to meet energy needs (doing the above steps before will result in the need for much smaller renewable energy systems, making carbon neutrality achievable.) 运用可再生资源来满足能量需求(做好上述步骤可减少对可再生能源系统 的需求,以致实现碳中立。) #4 Use purchased Offsets as a last resort when all other means have been looked at on site, or where the scope of building exceeds the site available resources. 当已审视了所有其他的手段,或建筑范围超过现场可用资源时,使用换取补偿为最 后手段
    21. 21. Operating Energy Begin with Passive Strategies for Climate Control to Reduce Energy Requirements 从被动式气候调节设计开始减少能量需求 运作能耗 热辐射 蒸发 HEATING 取暖 冬 对流 减少室外空气流动 促进太阳辐射 促进增加 减少透射 抑制消耗 减少传导热流 抑制增加 减少传导热流 减少透射 减少太阳辐射 促进消耗 促进地下冷却 促进通风 促进辐射冷却 大气 促进蒸发冷却 太阳 大气 COOLING 制冷 夏 控制对策 热传导 天空 热源 地 吸热/ 散热设 备 气候调节策略 大气
    22. 22. Operating Energy Operating Energy 运作能耗 运作能耗 Total Commercial/Institutional Secondary Energy Use by End Use in Canada (2006) 加拿大商业/机构二次能源的终端使用 HEAT TRANSFER 传热 Auxiliary Equipment 辅助设备 16% Water Heating 热水供暖 9% Auxiliary Motors 辅助电动机 8% ELECTRICITY SAVINGS 电能节约 Lighting 照明 11% Source: Natural Resources Canada, 2006 Space Heating 空间加热 49% Space Cooling 空间制冷 7% 22
    23. 23. Reduce loads: Passive Strategies 减少负荷: 被动式设计对策 The tiered approach to reducing carbon for HEATING: 取暖减碳金字塔: Smaller Mechanical Heating needed 缩小机械加热的需求 Apply Passive Solar Heating 使用被动式太阳能取暖 Maximize Heat Retention (insulation, tightness) 增大保暖性能(保温,密封 性) First reduce the overall energy required, then maximize the amount of energy required for mechanical heating that comes from renewable sources. 优先减少总能量的需求,再利用可再生资源增大机械取暖的能量需求 Source: Lechner. Heating, Cooling, Lighting.
    24. 24. Thermal Mass is Critical! 蓄热体是关键! To ensure comfort to the occupants…. 确保居住者的舒适… People are 80% water so if they are the only thermal sink in the room, they will be the target. 人是由80%的水组成的,如果 他们是唯一的热汇,他们将会 吸收所有热能。 And to store the FREE energy for slow release distribution…. 储存为以后缓慢释放的天然能 量… Aldo Leopold Legacy Center: Concrete floors complement the insulating wood walls
    25. 25. Thermal mass is the “container” for free heat… 蓄热体是一个储存天然热量的“容器”… If you “pour” the sun on wood, it is like having no container at all. 如果把太阳光“倒”在木 头上,就好比沒有用容 器将其保存。 Just like water, free solar energy needs to be stored somewhere to be useful! 就像水一样,太阳能也需要有地 方储存以便以后的有效利用!
    26. 26. Light Mass Building 轻质量房屋  Wide swings of temperature from day to night 早晚气温变化巨大  Excess heat absorbed by human occupants 多余的热能被居住者吸收  Uncomfortably cold at night 令人不适的寒冷夜晚
    27. 27. Heavy Mass Building 重质量房屋  Glass needs to permit entry of solar radiation 窗户需要允许太阳辐射进入室内  Also need insulating blinds to prevent heat loss at night. 在夜间需要保温帘阻止热量损失
    28. 28. Reduce loads: Passive Strategies 减少负荷: 被动式设计对策 The tiered approach to reducing carbon for COOLING: 制冷减碳金字塔: Smaller Mechanical Cooling required 缩小机械制冷的需求 Passive Cooling (natural ventilation) 使用被动式降温(自然通风) Heat Avoidance (shading, microclimate, materials) 避热手段(遮阳,微气,材 料) Maximize the amount of energy required for mechanical cooling that comes from renewable sources. 利用可再生资源增大机械制冷的能量需求 Source: Lechner. Heating, Cooling, Lighting.
    29. 29. Passive Cooling Strategies: Heat Avoidance 被动式制冷对策:避热手段 1. shade windows from the sun during hot months 在炎热的月份遮阳 2. design materials and plantings to cool the local microclimate 利用材料和植物给小 气候降温 3. locate trees and trellis’ to shade east and west façades during morning and afternoon low sun 利用树木和棚架遮挡 东面的晨光和下午西 晒的墙面 If you don’t invite the heat in, you don’t have to get rid of it….. 如果你没有特意吸收额外的热能, 你并不需要想办法处理它们…
    30. 30. Shading Devices and the Envelope 遮阳装置与围护结构  Can be an extension of the roof 可以是屋檐的延伸  On multi storey buildings normally attached to the envelope 在多层建筑中,通常与围护结 构相连  Can be incorporated into the curtain wall 可以是幕墙的一部分  Must contend with snow loading 必须能承受雪荷载  Must be durable and low maintenance 必须是持久耐用和低维修保养的
    31. 31. Interior vs Exterior Shades 室内与室外遮阳 无太阳直射 BEST 最佳的 热空气积聚在窗户夹层之 间,随之排除至室外 阳光射入室内空间,热能 积聚在窗帘和窗户之间 BAD 不好的 室外遮阳装置:挑檐 室内遮阳装置:窗帘 双层玻璃中的遮阳装置 Once the heat is IN, it is IN! 当热能进入室内,不管怎样遮挡热能还是在室内 ! Internal blinds are good for glare, but not preventing solar gain. 室内窗帘可以减少眩光,但不能阻止太阳能获得量。
    32. 32. BEST 最佳的 雪荷载 热空气聚集在房 屋旁 固体水平挑檐 使热空气得以流通, 并减轻了雪荷载 条板式水平挑檐
    33. 33. This one uses ceramic fritted glass that is sloped, to allow some light but shed rain and wet snow. 运用倾斜的彩釉玻璃遮阳板可 使一些阳光射入,同时也可以 The above two use louvres or grates that will 防止雨水和雪的堆积。 let snow, rain and wind through. 上述图片使用了遮阳格栅,可防止雨雪的堆 积,和风对隔板的损害。
    34. 34. Passive Cooling Strategies - Ventilation: 被动式制冷对策-通风: 1. design for maximum ventilation 最大限度的通风设计 2. keep plans as open as possible for unrestricted air flow 尽量保障无限制空气 流动的开敞布局
    35. 35. Passive Cooling Strategies - Ventilation: 被动式制冷对策-通风: 3. use easily operable windows at low levels with high level clerestory windows to induce stack effect cooling 结合利用底层容易开启的活 动窗与高层的天窗引起烟囱 效应降温 4. Use trickle ventilation for winter fresh air 运用冬季新鲜空气细流通风 设备
    36. 36. Reduce loads: Daylighting 减少负荷: 采光 The tiered approach to reducing carbon with DAYLIGHTING: 采光减碳金字塔: Efficient artificial Lighting w/ sensors 装有传感器的高效人工照明 Glare, color, reflectivity and material concerns 眩光,颜色,反射和材料考虑 Orientation and planning of building to allow light to reach maximum no. of spaces 利用朝向和房屋布局使最大数量 的空间得到日照 Use energy efficient fixtures! 使用节能装置! Maximize the amount of energy/electricity required for artificial lighting that comes from renewable sources. 利用可再生资源增大机械照明的能量/电力需求 Source: Lechner. Heating, Cooling, Lighting.
    38. 38. Global Bio-climatic Design: Operating Energy 运作能耗 Envelope design must first acknowledge regional, local and microclimate impacts on the building and site. COLD (very cold) TEMPERATE (warm) HOT-ARID HOT-HUMID
    39. 39. Different regions of China require very different envelope designs 针对中国不同区域的气候特征需要,围护设计也大有不同。
    40. 40. Bio-climatic Design: HOT-ARID 生物气候设计: 炎热干燥气候 Where very high summer temperatures with great fluctuation predominate with dry conditions throughout the year. Cooling degrees days greatly exceed heating degree days. 全年夏季气温居高且波动巨大,并非常干 燥的地区。冷度日大多于热度日。 RULES 规则: - SOLAR AVOIDANCE: keep DIRECT SOLAR GAIN out of the building 回避太阳能:避免太阳直射入室内 Traditional House in Egypt 埃及传统房屋 - avoid daytime ventilation 避免白天通风 - promote nighttime flushing with cool evening air 利用夜间凉风冷却蓄热体 - achieve daylighting by reflectance and use of LIGHT non-heat absorbing colours 利用光反射和不吸热颜色实现采光 - create a cooler MICROCLIMATE by using light / lightweight materials 采用淡色/轻质材料创造一个凉爽的微气候 - respect the DIURNAL CYCLE 遵守昼夜循环 - use heavy mass for walls and DO NOT INSULATE 采用厚重的墙壁,而不需要隔热
    41. 41. 阿斯旺,埃及 温度范围 记录最高值 设计最高值 平均最高值 平均值 平均最低值 设计最低值 记录最低值 舒适范围 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 年 度
    42. 42. 阿斯旺,埃及 逐月气温日较差 辐 射 温 度 每小时平均值 温度(摄氏度) 干球温度平均值 湿球温度平均值 干球温度(每小时) 舒适范围 辐射 全球水平 直射 漫射 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    43. 43. 阿斯旺,埃及 湿度图 适应性舒适 相对湿度 设计策略:1月至12月 舒适度 舒适 湿球温度 (摄氏度) 20% ) 舒适的小时 (1754小时 干球温度(摄氏度) 湿度比 不舒适
    44. 44. Bio-climatic Design: HOT-HUMID 生物气候设计: 炎热潮湿气候 Where warm to hot stable conditions predominate with high humidity throughout the year. Cooling degrees days greatly exceed heating degree days. 全年温暖至炎热,气温稳定,并且非常潮 湿的地区。冷度日大多于热度日。 RULES 规则: - SOLAR AVOIDANCE : large roofs with overhangs that shade walls and to allow House in Seaside, Florida windows open at all times 回避太阳能:大屋顶加挑檐可以遮荫,窗户也 可一直敞开通风 - PROMOTE VENTILATION 促进通风 - USE LIGHTWEIGHT MATERIALS that do not hold heat and that will not promote condensation and dampness (mold/mildew) 采用不蓄热,不会聚集湿气和结露(滋生霉菌)的轻质材料 - eliminate basements and concrete 消除地下室和混凝土材料 - use STACK EFFECT to ventilate through high spaces 利用烟囱效应从高空间通风 - use of COURTYARDS and semi-enclosed outside spaces 采用庭院和半封闭式室外空间 - use WATER FEATURES for cooling 利用水景降温
    45. 45. 广州,广东省,中国 温度范围 记录最高值 设计最高值 平均最高值 平均值 平均最低值 设计最低值 记录最低值 舒适范围 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 年 度
    46. 46. 广州,广东省,中国 逐月气温日较差 辐 射 温 度 每小时平均值 温度(摄氏度) 干球温度平均值 湿球温度平均值 干球温度(每小时) 舒适范围 辐射 全球水平 直射 漫射 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    47. 47. 广州,广东省,中国 湿度图 适应性舒适 相对湿度 设计策略:1月至12月 舒适度 舒适 湿球温度 (摄氏度) 38.3% 舒适的小时 (3352小时) 干球温度(摄氏度) 湿度比 不舒适
    48. 48. Bio-climatic Design: TEMPERATE 生物气候设计: 温带气候 The summers are hot and humid, and the winters are cold. In much of the region the topography is generally flat, allowing cold winter winds to come in from the northwest and cool summer breezes to flow in from the southwest. The four seasons are almost equally long. 夏季炎热潮湿,冬季寒冷的地区。大部 分地区的地形是平坦的,形成冬季寒冷 的西北风和夏季凉爽的西南风。四个季 节几乎一样长。 IslandWood Residence, Seattle, WA RULES 规则: - BALANCE strategies between COLD and HOT-HUMID 综合平衡寒冷气候和炎热潮湿气候的设计对策 - maximize flexibility in order to be able to modify the envelope for varying climatic conditions 加大围护结构的灵活性,使得可以适应不同的气候变化 - understand the natural benefits of SOLAR ANGLES that shade during the warm months and allow for heating during the cool months 了解太阳高度角带来的自然优势:在温暖的季节遮挡阳光,在寒冷的季节利用阳光取暖
    49. 49. 上海,中国 温度范围 记录最高值 设计最高值 平均最高值 平均值 平均最低值 设计最低值 记录最低值 舒适范围 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 年 度
    50. 50. 上海,中国 逐月气温日较差 辐 射 温 度 每小时平均值 温度(摄氏度) 干球温度平均值 湿球温度平均值 干球温度(每小时) 舒适范围 辐射 全球水平 直射 漫射 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    51. 51. 上海,中国 湿度图 适应性舒适 相对湿度 设计策略:1月至12月 舒适度 舒适 湿球温度 (摄氏度) 21.7% 舒适的小时 (4899小时) 干球温度(摄氏度) 湿度比 不舒适
    52. 52. Bio-climatic Design: COLD 生物气候设计: 寒冷气候 Where winter is the dominant season and concerns for conserving heat predominate all other concerns. Heating degree days greatly exceed cooling degree days. 以冬季为主要季节,保暖为最优先与主导 考虑的地区。热度日大多于冷度日。 RULES 规则: - First INSULATE 首先隔热 - exceed CODE requirements (DOUBLE??) YMCA Environmental Learning Centre, 超过规范要求(双倍??) Paradise Lake, Ontario - minimize infiltration (build tight to reduce air changes) - 减少空气渗透(密封建筑减少气流变化) - Then INSOLATE 充足日照 - ORIENT AND SITE THE BUILDING PROPERLY FOR THE SUN 根据太阳高度和角度来确定房屋方位与朝向 - maximize south facing windows for easier control 最大限度的增加朝南窗户使其容易控制 - fenestrate for DIRECT GAIN 直接获取阳光的窗 - apply THERMAL MASS inside the building envelope to store the FREE SOLAR HEAT 利用围护结构在室内的蓄热体来储存天然的太阳热能 - create a sheltered MICROCLIMATE to make it LESS cold 创造一个遮蔽的微气候,使周围环境 不那么冷
    53. 53. 哈尔滨,黑龙江,中国 温度范围 记录最高值 设计最高值 平均最高值 平均值 平均最低值 设计最低值 记录最低值 舒适范围 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 年 度
    54. 54. 哈尔滨,黑龙江,中国 逐月气温日较差 辐 射 温 度 每小时平均值 温度(摄氏度) 干球温度平均值 湿球温度平均值 干球温度(每小时) 舒适范围 辐射 全球水平 直射 漫射 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    55. 55. 哈尔滨,黑龙江,中国 湿度图 适应性舒适 相对湿度 设计策略:1月至12月 舒适度 舒适 湿球温度 (摄氏度) 10.1% 舒适的小时 (887小时) 干球温度(摄氏度) 湿度比 不舒适
    56. 56. Cold Climate Opaque Envelope Requirements 寒冷气候不透明围护结构要求 - Very tight construction 非常密封的结构 - Thermal mass on the INSIDE 蓄热体应放在室内 - Gypsum board is not of sufficient thickness to store heat 石膏板的厚度远远不够储存热量 - Thickness of 50 to 100mm preferred 50至100毫米为比较好的厚度 - Increased insulation levels 增加保温值 - Choose insulation that is more “sustainable” 选择更“环保”的保温材料 - Insulation with low embodied energy 低自含能量的保温材料 - Insulation from renewable sources 利用可再生资源的保温材料 Question: What does a building envelope with 2X insulation look like? 问题:保温层为两倍的围护结构是什么样?
    57. 57. Sustainable Insulation 环保保温材料 Alternates are in... – including, recycled paper, recycled denim, soya based hemp, icynene... 可代替的材料 有…再生环保 纸,回收粗棉 布,大豆为基 Fibreglass 础的大麻纤维 is ,安健能… out! 玻璃纤维要 被淘汰!
    58. 58. Super-Insulation 超级保温材料 保温层 最低保温要求 安大略省南部 燃气/气油 墙 天花板 地库 安大略省北部 电力 燃气/气油 电力 And when relying on renewable energy to supplement, often electricity based, the requirements are even higher. 当依靠可再生能源 (电)的补充,要 求更高。
    59. 59. Super-Insulation 超级保温材料  Cold climates in particular are looking at double code insulation levels to reduce heat loss 在寒冷气候中保温层通常需要规范要求的两倍来 减少热量损失  This implies choosing either more effective insulation or 这意味着选择更有效的保温层,或  Accommodating thicker insulation in the wall, or a combination of the two strategies 采用更厚的保温层,或,结合以上两种对策
    60. 60. 聚氨酯保暖系数与其他保暖材料的对比 1/2磅聚氨酯 2磅聚氨酯 泡沫聚苯乙烯 玻璃纤维 聚苯乙烯 泡沫塑料 Double stud, increases insulation, high cost, thermal bridges. 双立柱,增加保温层,高成本,热桥效应 Different Rvalues require differentiated approach to accommodating higher insulation values in walls. 不同的保暖系数 需要不同的方法 适应墙壁更高的 保温值 Layered approach, increases insulation, lower cost, eliminates thermal bridges. 分层方式,增加保温层,低成本,消除热
    61. 61. 建造北美特别研究计 划:在不同气候地域 中高效住宅的高保温 系数围护结构设计大 全 For more information! 详细信息请到以下网站
    62. 62. Low Carbon Building Envelopes are all different Some are very High Tech and expensive Others are less expensive but still work 所有低碳围护结构都各有 不同。 有非常先进与昂贵的,也 有便宜实惠但也运作有效 的
    63. 63. Contact Information 联系方式 Terri Meyer Boake, BES, BArch, MArch, LEED AP Professor, University of Waterloo Past President Society of Building Science Educators Past President Building Technology Educators’ Society Member OAA Committee on Sustainable Built Environment A pdf of this presentation will be found at: 此演讲可在以下网址查看: