TARUN GEHLOT (B.E, CIVIL, HONOURS)
The Newton-Raphson Method
Already the Babylonians knew how to approximate square roots....
TARUN GEHLOT (B.E, CIVIL, HONOURS)
From the above picture, we see that x2 is getting closer to r. Easy calculations give
S...
TARUN GEHLOT (B.E, CIVIL, HONOURS)
Let be the successive approximations obtained through Newton's method. We
have
Let us s...
TARUN GEHLOT (B.E, CIVIL, HONOURS)
This solution is also the only zero of the function . So now we see
how Newton's method...
Upcoming SlideShare
Loading in...5
×

The newton raphson method

374

Published on

The newton raphson method

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
374
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

The newton raphson method

  1. 1. TARUN GEHLOT (B.E, CIVIL, HONOURS) The Newton-Raphson Method Already the Babylonians knew how to approximate square roots. Let's consider the example of how they found approximations to . Let's start with a close approximation, say x1=3/2=1.5. If we square x1=3/2, we obtain 9/4, which is bigger than 2. Consequently . If we now consider 2/x1=4/3, its square 16/9 is of course smaller than 2, so . We will do better if we take their average: If we square x2=17/12, we obtain 289/144, which is bigger than 2. Consequently . If we now consider 2/x2=24/17, its square 576/289 is of course smaller than 2, so . Let's take their average again: x3 is a pretty good rational approximation to the square root of 2: but if this is not good enough, we can just repeat the procedure again and again.Newton and Raphson used ideas of the Calculus to generalize this ancient method to find the zeros of an arbitrary equation Their underlying idea is the approximation of the graph of the function f(x) by the tangent lines, which we discussed in detail in the previous pages.Let r be a root (also called a "zero") of f(x), that is f(r) =0. Assume that . Let x1 be a number close to r (which may be obtained by looking at the graph of f(x)). The tangent line to the graph of f(x) at(x1,f(x1)) has x2 as its x-intercept.
  2. 2. TARUN GEHLOT (B.E, CIVIL, HONOURS) From the above picture, we see that x2 is getting closer to r. Easy calculations give Since we assumed , we will not have problems with the denominator being equal to 0. We continue this process and find x3 through the equation This process will generate a sequence of numbers which approximates r.This technique of successive approximations of real zeros is called Newton's method, or the Newton-Raphson Method. Example. Let us find an approximation to to ten decimal places. Note that is an irrational number. Therefore the sequence of decimals which defines will not stop. Clearly is the only zero of f(x) = x2 - 5 on the interval [1,3]. See the Picture.
  3. 3. TARUN GEHLOT (B.E, CIVIL, HONOURS) Let be the successive approximations obtained through Newton's method. We have Let us start this process by taking x1 = 2. It is quite remarkable that the results stabilize for more than ten decimal places after only 5 iterations! Example. Let us approximate the only solution to the equation In fact, looking at the graphs we can see that this equation has one solution.
  4. 4. TARUN GEHLOT (B.E, CIVIL, HONOURS) This solution is also the only zero of the function . So now we see how Newton's method may be used to approximate r. Since r is between 0 and , we set x1 = 1. The rest of the sequence is generated through the formula We have

×