Gaussian quadratures
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Gaussian quadratures

  • 549 views
Uploaded on

Gaussian quadratures

Gaussian quadratures

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
549
On Slideshare
407
From Embeds
142
Number of Embeds
10

Actions

Shares
Downloads
8
Comments
0
Likes
0

Embeds 142

http://tarungehlots.blogspot.in 117
http://tarungehlots.blogspot.com 10
http://www.tarungehlots.blogspot.in 4
http://tarungehlots.blogspot.com.br 3
http://tarungehlots.blogspot.ru 3
http://tarungehlots.blogspot.se 1
http://tarungehlots.blogspot.de 1
http://tarungehlots.blogspot.ae 1
http://tarungehlots.blogspot.co.uk 1
http://www.slideee.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Gaussian Quadratures • Newton-Cotes Formulae – use evenly-spaced functional values – Did not use the flexibility we have to select the quadrature points • In fact a quadrature point has several degrees of freedom. Q(f)=∑i=1m ci f(xi) A formula with m function evaluations requires specification of 2m numbers ci and xi • Gaussian Quadratures – select both these weights and locations so that a higher order polynomial can be integrated (alternatively the error is proportional to a higher derivatives) • Price: functional values must now be evaluated at nonuniformly distributed points to achieve higher accuracy • Weights are no longer simple numbers • Usually derived for an interval such as [-1,1] • Other intervals [a,b] determined by mapping to [-1,1]
  • 2. Gaussian Quadrature on [-1, 1] ∫ 1 −1 n f ( x )dx ≈ ∑ c i f ( x i ) = c 1 f ( x 1 ) + c 2 f ( x 2 ) + L + c n f ( x n ) i =1 • Two function evaluations: – Choose (c1, c2, x1, x2) such that the method yields “exact integral” for f(x) = x0, x1, x2, x3 n=2: ∫ 1 −1 f(x)dx = c 1 f(x 1 ) + c 2 f(x 2 ) -1 x1 x2 1
  • 3. Finding quadrature nodes and weights • One way is through the theory of orthogonal polynomials. • Here we will do it via brute force • Set up equations by requiring that the 2m points guarantee that a polynomial of degree 2m-1 is integrated exactly. • In general process is non-linear – (involves a polynomial function involving the unknown point and its product with unknown weight) – Can be solved by using a multidimensional nonlinear solver – Alternatively can sometimes be done step by step
  • 4. Gaussian Quadrature on [-1, 1] n=2: ∫ 1 −1 f(x)dx = c 1 f(x 1 ) + c 2 f(x 2 ) Exact integral for f = x0, x1, x2, x3 – Four equations for four unknowns ⎧f ⎪ ⎪ ⎪f ⎨ ⎪f ⎪ ⎪f ⎩ 1 = 1 ⇒ ∫ 1dx = 2 = c 1 + c 2 −1 1 = x ⇒ ∫ xdx = 0 = c 1 x 1 + c 2 x 2 −1 2 2 2 = x ⇒ ∫ x dx = = c 1 x 1 + c 2 x 2 −1 3 2 1 2 1 3 3 = x ⇒ ∫ x 3 dx = 0 = c 1 x 1 + c 2 x 2 3 −1 1 I = ∫ f ( x )dx = f ( − −1 ⎧c 1 = 1 ⎪c = 1 ⎪ 2 −1 ⎪ ⇒ ⎨ x1 = 3 ⎪ 1 ⎪ ⎪ x2 = 3 ⎩ 1 3 )+ f ( 1 3 )
  • 5. Error • If we approximate a function with a Gaussian quadrature formula we cause an error proportional to 2n th derivative
  • 6. Gaussian Quadrature on [-1, 1] n=3: ∫ 1 −1 f ( x )dx = c 1 f ( x 1 ) + c 2 f ( x 2 ) + c 3 f ( x 3 ) x2 x3 -1 x1 1 • Choose (c1, c2, c3, x1, x2, x3) such that the method yields “exact integral” for f(x) = x0, x1, x2, x3,x4, x5
  • 7. Gaussian Quadrature on [-1, 1] 1 f = 1 ⇒ ∫ xdx = 2 = c1 + c2 + c3 −1 1 f = x ⇒ ∫ xdx = 0 = c1 x1 + c2 x2 + c3 x3 −1 1 2 2 2 f = x ⇒ ∫ x dx = = c1 x12 + c2 x2 + c3 x3 3 −1 2 2 1 3 3 f = x 3 ⇒ ∫ x 3dx = 0 = c1 x13 + c2 x2 + c3 x3 −1 1 2 4 4 f = x ⇒ ∫ x dx = = c1 x14 + c2 x2 + c3 x3 5 −1 4 4 1 5 5 f = x 5 ⇒ ∫ x 5 dx = 0 = c1 x15 + c2 x2 + c3 x3 −1 ⎧c1 = 5 / 9 ⎪c = 8 / 9 ⎪ 2 ⎪c3 = 5 / 9 ⎪ ⇒⎨ ⎪ x1 = − 3 / 5 ⎪ x2 = 0 ⎪ ⎪ x3 = 3 / 5 ⎩
  • 8. Gaussian Quadrature on [-1, 1] Exact integral for f = x0, x1, x2, x3, x4, x5 I=∫ 1 −1 3 5 3 8 5 ) f ( x )dx = f ( − )+ f (0 )+ f ( 9 5 9 5 9
  • 9. Gaussian Quadrature on [a, b] Coordinate transformation from [a,b] to [-1,1] b−a b+a t= x+ 2 2 ⎧ x = −1 ⇒ t = a ⎨ ⎩x = 1 ⇒ t = b a ∫ b a t1 f ( t )dt = ∫ 1 −1 t2 b 1 b−a b+a b−a f( x+ )( )dx = ∫ g ( x )dx −1 2 2 2
  • 10. Example: Gaussian Quadrature 4 I = ∫ te dt = 5216.926477 Evaluate 2t 0 Coordinate transformation b−a b+a t= x+ = 2 x + 2; dt = 2dx 2 2 4 1 I = ∫ te dt = ∫ (4 x + 4)e 2t 4 x+4 −1 0 1 dx = ∫ f ( x)dx −1 Two-point formula 1 I = ∫ f ( x )dx = f ( −1 −1 )+ f ( 1 )= (4 − 4 )e 3 3 3 = 9.167657324 + 3468.376279 = 3477.543936 4− 4 3 +(4 + 4 )e 3 ( ε = 33.34%) 4+ 4 3
  • 11. Example: Gaussian Quadrature Three-point formula 1 5 8 5 I = ∫ f ( x )dx = f ( − 0.6 ) + f ( 0 ) + f ( 0.6 ) −1 9 9 9 5 8 5 4 − 0 .6 4 = ( 4 − 4 0.6 )e + ( 4 )e + ( 4 + 4 0.6 )e 4 + 0.6 9 9 9 5 8 5 = ( 2.221191545 ) + ( 218.3926001 ) + ( 8589.142689 ) 9 9 9 = 4967.106689 ( ε = 4.79%) Four-point formula I = ∫ f ( x )dx = 0.34785[ f ( −0.861136 ) + f ( 0.861136 )] 1 −1 + 0.652145 [ f ( −0.339981 ) + f ( 0.339981 )] = 5197.54375 ( ε = 0.37%)
  • 12. Other rules • Gauss-Lobatto: – requiring end points be included in the formula • Gauss-Radau – Require one end point be in the formula