• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Specific and non Specific immune responses
 

Specific and non Specific immune responses

on

  • 1,001 views

 

Statistics

Views

Total Views
1,001
Views on SlideShare
1,001
Embed Views
0

Actions

Likes
2
Downloads
60
Comments
1

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Specific and non Specific immune responses Specific and non Specific immune responses Presentation Transcript

    • Specific and Non Specific Immune Responses and Immune Disorders
    • Microbiology Assignment Prepared by : TARIQ JAVED GILL. B. Sc. N Semester I Year 2012-2014
    • OBJECTIVES: At the end of session the audience will be able to: Define specific and non specific immune responses. Understand how the Immune System works. Explain about the common Immune Disorders.
    • IMMUNE RESPONSE • The immune response is how your body recognizes and defends itself against bacteria, viruses, and substances that appear foreign and harmful. • The immune system protects the body from possibly harmful substances by recognizing and responding to antigens. Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria. Nonliving substances such as toxins, chemicals, drugs, and foreign particles (such as a splinter) can also be antigens. The immune system recognizes and destroys substances that contain antigens. • Your own body's cells have proteins that are antigens. These include a group of antigens called HLA antigens. Your immune system learns to see these antigens as normal and usually does not react against them. • We survive because our body’s immune system defends us against pathogens (disease-causing agents). The immune system consists of cells and tissues found throughout the body. The body uses both nonspecific and specific defense mechanisms to prevent infection and to detect and destroy pathogens. 4
    • Non Specific Immune Response INNATE IMMUNITY OR NON SPECIFIC IMMUNITY Innate, or nonspecific, immunity is the defense system with which you were born. It protects you against all antigens. Innate immunity involves barriers that keep harmful materials from entering your body. These barriers form the first line of defense in the immune response. Examples of innate immunity include: Cough reflex Enzymes in tears and skin oils Mucus, which traps bacteria and small particles Skin Stomach acid 5
    • First line of nonspecific defenses The body’s surface defenses are nonspecific, meaning they do not target specific pathogens. SKIN is the first of our immune system’s nonspecific defenses against pathogens. • Skin acts as a nearly impenetrable barrier to invading pathogens, keeping them outside the body. • This barrier is reinforced with chemical weapons – oil and sweat! • Oil and sweat make the skin’s surface acidic, inhibiting the growth of many pathogens and sweat contains • the enzyme lysozyme which digests bacterial cell walls. 6
    • CONTINUED • Internal surfaces of the body through which pathogens can pass are covered by MUCOUS MEMBRANES. • Mucous membranes are layers of epithelial tissue that produce sticky, viscous fluid called mucus. • Mucous membranes line the digestive system, nasal passages, lungs, respiratory passages, and the reproductive tract. • Skin and mucous membranes work to prevent any pathogens from entering the body; nevertheless, sometimes these defenses are penetrated. • When invaders reach deeper tissue, a second line of nonspecific defenses takes over. 7
    • Second line of nonspecific defenses When the body is invaded, four important non-specific defenses take action: 1. The Inflammatory Response Caused by injury or local infection, like a cut or a scrape Is a series of events that suppress infection and speed recovery Imagine that a splinter has punctured your finger, creating an entrance for pathogens. Infected or injured cells in your finger release chemicals, including histamine. Histamine causes local blood vessels to dilate, increasing blood flow to the area. 8
    • CONTINUED Increased blood flow brings white blood cells to the infection site, where they can attack pathogens. This also causes swelling and redness in the infected area. The whitish liquid, or pus, associated with some infections contains white blood cells, dead cells and dead pathogens. Inflammation aids the fight against infection by increasing blood flow to the site and raising temperature to retard bacterial growth. 9
    • Continued 10 The events in a local inflammation. When an invading microbe has penetrated the skin, chemicals, such as histamine and prostaglandins, cause nearby blood vessels to dilate. Increased blood flow brings a wave of phagocytic cells, which attack and engulf invading
    • 2. The Temperature Response When the body begins its fight against pathogens, body temperature increases several degrees above the normal value of about 37°C (98.6°F). This higher temperature is called a fever, and it is a common symptom of illness that shows the body is responding to an infection. Fever is helpful because many pathogenic bacteria do not grow well at high temperatures. But, very high fever is dangerous because extreme heat can destroy important cellular enzymes. Temperatures greater than 39°C (102°F) are considered dangerous and those greater than 41°C(105°C) can be fatal. 11
    • 3. Proteins that kill or inhibit pathogens Certain proteins circulate in the blood and become active when they encounter certain pathogens. Then they form a membrane attack complex (a ring-shaped structure that ruptures the cell membrane of pathogens).  Another nonspecific defense is interferon (a protein released by cells infected with viruses). Causes nearby cells to produce an enzyme that prevents viruses from making proteins and RNA. 12
    • 4. White Blood Cells The most important counterattacks in the second line of nonspecific defenses are carried out by three types of white blood cells: Neutrophils, Macrophages and Natural killer cells. These cells patrol the bloodstream, wait within the tissues for pathogens, and then attack the pathogens. Each kind of cell uses a different mechanism to kill pathogens: 13
    • Neutrophils Is a WBC that engulfs and destroys pathogens. Most abundant type of WBC Sacrifice themselves to defend the body Engulf bacteria and then release chemicals that kill the bacteria and themselves 14
    • Macrophages Ingest and kill pathogens they encounter Clear dead cells and other debris from the body Most travel through the body in blood, lymph, and fluid between cells  Concentrated in particular organs, especially the spleen and lungs. 15
    • Natural Killer Cells Large WBC that attacks cells infected with pathogens Destroy an infected cell by puncturing its cell membrane Water then rushes into the infected cell, causing the cell to swell and burst One of the body’s best defenses against cancer – can detect cancer cells before a tumor can develop 16
    • SPECIFIC IMMUNE RESPONSE The Immune Response: The Third Line of Defense What happens when pathogens occasionally overwhelm your body’s nonspecific defenses? Pathogens that have survived the first and second lines of nonspecific defenses still face a third line of specific defenses the immune response.
    • SPECIFIC IMMUNE RESPONSE Few of us pass through childhood without contracting some sort of infection. Chicken pox, for example, is an illness that many of us experience before we reach our teens. It is a disease of childhood, because most of us contract it as children and never catch it again. Once you have had the disease, you are usually immune to it. Specific immune defense mechanisms provide this immunity. 18
    • DISCOVERY OF SPECIFIC IMMUNE SYSTEM In 1796, an English country doctor named Edward Jenner carried out an experiment that marks the beginning of the study of immunology. Smallpox was a common and deadly disease in those days. Jenner observed, however, that milkmaids who had caught a much milder form of “the pox” called cowpox (presumably from cows) rarely caught smallpox. Jenner set out to test the idea that cowpox conferred protection against smallpox. He infected people with cowpox and as he had predicted, many of them became immune to smallpox. We now know that smallpox and cowpox are caused by two different viruses with similar surfaces. Jenner’s patients who were injected with the cowpox virus mounted a defense that was also effective against a later infection of the smallpox virus. Jenner’s procedure of injecting a harmless microbe in order to confer resistance to a dangerous one is called vaccination. Modern attempts to develop resistance to malaria, herpes, and other diseases often involve delivering antigens via a harmless vaccinia virus related to cowpox virus. 19
    • Key Concepts of Specific Immunity Antigens are molecules, usually foreign, that provoke a specific immune attack. This immune attack may involve secreted proteins called antibodies, or it may invoke a cell-mediated attack. A large antigen may have several parts, and each stimulate a different specific immune response. In this case, the different parts are known as antigenic determinant sites, and each serves as a different antigen. Particular lymphocytes have receptor proteins on their surfaces that recognize an antigen and direct a specific immune response against either the antigen or the cell that carries the antigen. 20
    • CONTINUED Lymphocytes called B cells respond to antigens by producing proteins called antibodies. Antibody proteins are secreted into the blood and other body fluids and thus provide humoral immunity. (The term humor here is used in its ancient sense, referring to a body fluid.) Other lymphocytes called T cells do not secrete antibodies but instead directly attack the cells that carry the specific antigens. These cells are thus described as producing cell-mediated immunity. 21
    • Third line of defense – Specific immune response The immune response consists of an army of individual cells that rush throughout the body to combat specific invading pathogens. 22
    • Cells Involved in the Immune Response WBC are produced in bone marrow and circulate in blood and lymph. Of the 100 trillion cells in your body, about 2 trillion are WBC. Four main kinds of WBC participate in the immune response: macrophages, cytotoxic T cells, B cells, and helper T cells. Each kind of cell has a different function: Macrophages – consume pathogens and infected cells Cytotoxic T cells – attack and kill infected cells B cells – activate both cytotoxic T cells and B cells Helper T cells – activate both cytotoxic T cells and B cells These four kinds of WBC interact to remove pathogens from the body.23
    • Recognizing Invaders Imagine that you have just come down with the flu. You have inhaled the influenza viruses, but they were not trapped by mucus in the respiratory tract. The viruses have begun to infect and kill your cells. At this point, macrophages begin to engulf and destroy the viruses. An infected body cell will display antigens of an invader on its surface. An antigen is a substance that triggers an immune response. Antigens typically include proteins and other components of viruses or pathogen cells present on the cell surface. WBCs of the immune system are covered with receptor proteins that respond to infection by binding to specific antigens on the surfaces of the infecting microbes. These receptors recognize and bind to antigens that match their particular shape. 24
    • Recognizing Invaders 25
    • Immune response has two main parts Two distinct processes work together in an immune response. B cell response - a passive defense that aids the removal of pathogens from the body. T cell response – an active, cell-mediated defense that involves the destruction of pathogens by cytotoxic T cells. Both the T cell response and B cell response are regulated by helper T cells. 26
    • Continued : Immune response has two main parts Step 1: When a virus infects body cells, the infected cells display the viral antigen on their surface. Step 2: Macrophages engulf the virus and display the viral antigen on their surface. Step 3:Receptor proteins on helper T cells bind to the viral antigen displayed by the macrophages. The macrophages release a protein called interleukin-1. Step 4: Interleukin-1 activates helper T cells, but helper T cells do not attack pathogens directly. Instead, helper T-cells activate cytotoxic T cells and B cells. Stimulation by interleukin-1 causes helper T cells to release interleukin-2. Interleukin-2 stimulates further division of helper T cells and cytotoxic T cells, amplifying the body’s response to the infection. 27
    • Continued : Immune response has two main parts Step 5: Interleukin-2 released by helper T cells also activates B cells. When activated by interleukin-2, B cells divide and develop into plasma cells. Plasma cells are cells that release special defensive proteins into the blood. These specialized proteins are called antibodies. An antibody is a Y shaped molecule that is produced by plasma cells upon exposure to a specific antigen and that can bind to that antigen. Step 6: Plasma cells divide repeatedly and make large amounts of antibodies. Plasma cells either release antibodies into the bloodstream or attach them directly to the virus. Antibodies bind to the viral antigen on the virus and on infected cells. Antibodies mark the virus and infected cells for destruction. 28
    • Continued : Immune response has two main parts Step 7: When a plasma cell encounters a virus with an antigen that matches its antibodies, it binds to the virus. This causes other viruses to stick together, forming a clump that can be easily identified and destroyed by macrophages. Step 8: With the help of antibodies and plasma cells, cytotoxic T cells destroy infected cells by puncturing the cell membrane of the infected cells. How do cytotoxic T cells recognize antigens? Your body makes millions of different T cells, each with receptor proteins that bind to a specific antigen. Receptor proteins on cytotoxic T cells bind to the viral antigen displayed by infected cells. For example, any of your body’s cells that bear traces of an influenza virus will be destroyed by cytotoxic T cells with receptor proteins that bind to the antigen of that virus. 29
    • Continued 30
    • 31
    • 32
    • Immune System Disorders.
    • Immune System Disorders Hypersensitivity (Allergy): An abnormal response to antigens. Four Types of Hypersensitivity Reactions: • Type I (Anaphylactic) Reactions • Type II (Cytotoxic) Reactions • Type III (Immune Complex) Reactions • Type IV (Cell-Mediated) Reactions
    • Type I (Anaphylactic) Reactions • Occur within minutes of exposure to antigen • Antigens combine with IgE antibodies • IgE binds to mast cells and basophils, causing them to undergo degranulation and release several mediators: • Histamine: Dilates and increases permeability of blood vessels (swelling and redness), increases mucus secretion (runny nose), smooth muscle contraction (bronchi). • Prostaglandins: Contraction of smooth muscle of respiratory system and increased mucus secretion. • Leukotrienes: Bronchial spasms. • Anaphylactic shock: Massive drop in blood pressure. Can be fatal in minutes.
    • Mast Cells and the Allergic Response
    • Mast Cells and the Allergic Response
    • Type II (Cytotoxic) Reactions • Involve activation of complement by IgG or IgM binding to an antigenic cell. • Antigenic cell is lysed. • Transfusion reactions: • ABO Blood group system: Type O is universal donor. Incompatible donor cells are lysed as they enter bloodstream. • Rh Blood Group System: 85% of population is Rh positive. Those who are Rh negative can be sensitized to destroy Rh positive blood cells. •Hemolytic disease of newborn: Fetal cells are destroyed by maternal anti-Rh antibodies that cross the placenta.
    • Type III (Immune Complex) Reactions • Involve reactions against soluble antigens circulating in serum. • Usually involve IgA antibodies. • Antibody-Antigen immune complexes are deposited in organs, activate complement, and cause inflammatory damage. • Glomerulonephritis: Inflammatory kidney damage. • Occurs when slightly high antigen-antibody ratio is present.
    • Immune Complex Mediated Hypersensitivity
    • Type IV (Cell-Mediated) Reactions • Involve reactions by TD memory cells. • First contact sensitizes person. • Subsequent contacts elicit a reaction. • Reactions are delayed by one or more days (delayed type hypersensitivity). • Delay is due to migration of macrophages and T cells to site of foreign antigens. • Reactions are frequently displayed on the skin: itching, redness, swelling, pain. • Tuberculosis skin test • Poison ivy • Metals • Latex in gloves and condoms (3% of health care workers) • Anaphylactic shock may occur.
    • Some Diseases of Immune System • Allergic Contact Dermatitis Response to Poison Ivy Hapten • Grave’s Disease: • Myasthenia gravis: • Systemic Lupus Erythematosus: • Rheumatoid Arthritis: • Insulin-dependent (Type I or Juvenile) Diabetes Mellitus: • Acquired Immunodeficiency Syndrome (AIDS) 42
    • SUMMARY
    • SUMMARY 44 Type of Cell Function Location in the Body Macrophage Ingests and kills pathogens Spleen, lungs, blood, lymph, interstitial fluids Neutrophil Engulfs and destroys pathogens Bloodstream, infection sites Natural Killer Cell Punctures infected cells Infected cells Helper T Cell Activates cytotoxic T and B cells Bloodstream, infection sites Cytotoxic T Cell Punctures infected cells Infection sites B Cell Labels invaders for destruction By Macrophages Infection sites Plasma Cell Releases antibodies Bloodstream Memory Cell Protects against defeated pathogens Bloodstream
    • Summary 45  Many of the body’s most effective defenses are nonspecific. •Nonspecific defenses include physical barriers such as the skin, phagocytic cells, killer cells, and the complement proteins. •Inflammatory response aids the mobilization of defensive cells at infected sites.  Specific immune defenses require the recognition of antigens. •Lymphocytes called B cells secrete antibodies and produce the humoral response; lymphocytes called T cells are responsible for cell-mediated immunity.
    • Summary 46 T cells organize attacks against invading microbes. • T cells only respond to antigens presented to them by macrophages or other antigen-presenting cells together with MHC proteins. • Cytotoxic T cells kill cells that have foreign antigens presented together with proteins. B cells label specific cells for destruction. 1. The antibody molecules consist of two heavy and two light polypeptide regions arranged like a “Y”; the ends of the two arms bind to antigens. 2. An individual can produce a tremendous variety of different antibodies because the genes which produce those antibodies recombine extensively.
    • Summary 47 3. Active immunity occurs when an individual gains immunity by prior exposure to a pathogen; passive immunity is produced by the transfer of antibodies from one individual to another.  All animals exhibit nonspecific immune response but specific ones evolved in vertebrates. •The immune system evolved in animals from a strictly nonspecific immune response in invertebrates to the two-part immune defense found in mammals.
    • SUMMARY 48  The immune system can be defeated. Flu viruses, trypanosomes, and the protozoan that causes malaria are able to evade the immune system by mutating the genes that produce their surface antigens. In autoimmune diseases, the immune system targets the body’s own antigens.
    • 49 REFERENCES: www.mhhe.com/raven6e www.biocourse.com Source: The Immune System . Johnson, Raven. 2001. Biology: Principles and Explorations. Holt, Rinehart and Winston. Pages 931 - 937
    • Thank you for patience