limit fungsi
Upcoming SlideShare
Loading in...5
×
 

limit fungsi

on

  • 615 views

 

Statistics

Views

Total Views
615
Views on SlideShare
615
Embed Views
0

Actions

Likes
0
Downloads
25
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

limit fungsi limit fungsi Document Transcript

  • 13. LIMIT FUNGSI A. Limit fungsi aljabar f (a) 0 f ( x) = , maka lim Jika diselesaikan dengan cara sebagai berikut: x →a g ( x ) g (a) 0 1. Difaktorkan, jika f(x) dan g(x) bisa difaktorkan 2. Dikalikan dengan sekawan pembilang atau penyebut jika f(x) atau g(x) berbentuk akar 3. Menggunakan dalil L’Hospital jika f(x) dan g(x) bisa di turunkan  f (x) f ' (a ) = g ' (a ) x →a g ( x ) lim SOAL 1. UN 2011 PAKET 21 Nilai lim ( x − 4) x→4 x −2 PENYELESAIAN =… a. 0 b. 4 c. 8 d. 12 e. 16 Jawab : b 2. UN 2011 PAKET 46 Nilai lim x→ 2 x2 − 2 x− 2 =… a. 2 2 b. 2 c. 2 d. 0 e. − 2 Jawab : a 3. UN 2010 PAKET A  3x   = …. lim  Nilai dari x→0   9+x − 9−x  a. 3 b. 6 c. 9 d. 12 e. 15 Jawab : c
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com SOAL 4. UN 2010 PAKET B PENYELESAIAN 8   2 − 2  = …. x →0 x − 2 x −4 Nilai dari lim  a. 1 4 1 2 b. c. 2 d. 4 e. ∞ Jawab : b 5. UN 2009 PAKET A/B Nilai xlim2 →− x +2 5 x +14 − 2 adalah … a. 4 b. 2 c. 1,2 d. 0,8 e. 0,4 Jawab : d 6. UN 2008 PAKET A/B Nilai dari lim x→2 x 2 − 5x + 6 x 2 + 2x − 8 =… 1 2 a. 2 d. b. 1 e. − 1 6 c. 1 3 Jawab : e 7. UN 2007 PAKET A Nilai lim x→ 1 x 2 − 5x + 4 x 3 −1 =… a. 3 b. 21 2 c. 2 d. 1 e. –1 Jawab : e 8. UN 2007 PAKET B lim Nilai x→3 a. b. c. 9 − x2 4 − x2 + 7 =… 8 4 9 4 136 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com d. 1 e. 0 Jawab : a SOAL PENYELESAIAN 9. UN 2006 4 + 2x − 4 − 2x =… x Nilai lim x →0 a. 4 b. 2 c. 1 d. 0 e. –1 Jawab : c 10. UN 2004  1 6  = … − Nilai lim    x →3 x − 3 x 2 − 9  a. −1 b. 1 6 1 3 c. 6 1 d. 2 e. 1 Jawab : b 11. UAN 2003 lim Nilai dari x →2 4 − x2 3 − x2 +5 =… a. –12 b. –6 c. 0 d. 6 e. 12 Jawab: d 137 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com B. Limit fungsi trigonometri 1. sin ax ax a = lim = x →0 bx x →0 sin bx b 2. tan ax ax a = lim = x →0 bx x →0 tan bx b lim lim Catatan Identitas trigonometri yang biasa digunakan a. 1 – cos A = 2 sin 2 ( 1 A) 2 1 b. = csc x sin x 1 c. = secan x cos x d. cos A – cos B = – 2 sin 1 (A + B) ⋅ sin 1 (A – B) 2 2 e. cos A sin B = ½{sin(A + B) – sin(A – B)} SOAL 1. UN 2011 PAKET 12 PENYELESAIAN  1 − cos 2 x  = … x→0 2 x sin 2 x  Nilai lim  a. b. c. 1 8 1 6 1 4 d. 1 2 e. 1 Jawab : d 2. UN 2011 PAKET 46  1 − cos 2 x  = … x →0 1 − cos 4 x  Nilai lim  a. − 1 2 d. 1 16 1 4 b. − 1 4 c. 0 e. Jawab : e 3. UN 2010 PAKET A  cos 4 x sin 3 x   = …. x →0 5x  Nilai dari lim  a. 5 3 b. 1 d. 1 5 e. 0 138 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com c. 3 5 Jawab : c SOAL 4. UN 2010 PAKET B PENYELESAIAN  sin x + sin 5 x   = …. x →0 6x  Nilai dari lim  a. 2 d. 1 3 b. 1 e. –1 1 c. 2 Jawab : b 5. UN 2009 PAKET A/B x 2 + 6x + 9 adalah .. x →−3 2 − 2 cos( 2 x + 6) Nilai dari lim a. 3 b. 1 c. 1 2 d. 1 3 1 4 e. Jawab : e 6. UN 2007 PAKET A 2 x sin 3x =… x →0 1 − cos 6 x Nilai lim 1 3 a. –1 d. b. – 1 3 c. 0 e. 1 Jawab : d 7. UN 2007 PAKET B Nilai lim sin( x − 2) x →2 x 2 − 3x + 2 =… a. – 1 2 b. – 1 3 c. 0 d. 1 2 e. 1 Jawab : e 8. UN 2006 Nilai lim x →π 3 cos x − sin π π−x 6 2 6 =… a. – 1 2 3 d. –2 3 b. – 1 3 3 e. –3 3 139 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com c. Jawab : c SOAL 3 PENYELESAIAN 9. UN 2005 sin 12x Nilai lim x →0 2 x ( x a. –4 b. –3 c. –2 d. 2 e. 6 Jawab : c 10. UN 2004 Nilai lim + 2x − 3) 1 − cos 4x x2 x →0 a. –8 b. –4 c. 2 d. 4 e. 8 Jawab : e 11. UAN 2003 Nilai dari 2 lim x→ π 4 =… =… cos 2 x cos x − sin x = … a. – 2 b. – 1 2 2 c. 1 2 2 d. 2 e. 2 2 Jawab: d 12. EBTANAS 2002 1 − 1 sin x cos x =… lim 1 x→ 1 π x − π 4 4 a. –2 2 b. – 2 c. 0 d. 2 e. 2 2 Jawab : a 13. EBTANAS 2002 cos x − cos 5x =… x tan 2 x x →0 Nilai dari lim a. –4 b. –2 c. 4 140 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com d. 6 e. 8 Jawab : d C. Limit Mendekati Tak Berhingga 1. lim ax n + bx n −1 + ... x →∞ cx m p= b. c. lim x →∞ ( a. b. c. 3. = p , dimana: a , jika m = n c p = 0, jika n < m p = ∞, jika n > m a. 2. + dx m −1 + ... ) ax + b ± cx + d = q, dimana: q = ∞, bila a > c q = 0, bila a = c q = –∞, bila a < c b −q lim  ax 2 + bx + c − ax 2 + qx + r  =    2 a x →∞ SOAL 1. UN 2009 PAKET A/B Nilai lim x →∞ a. 0 b. 1 2 c. 1 2. UN 2005 PENYELESAIAN 5x + 4 − 3x + 9 ) =… 4x d. 2 e. 4 Jawab : a ( ) lim Nilai x →∞ x(4 x + 5) − 2 x + 1 = … a. 0 b. d. 1 4 1 2 e. ∞ c. 3. UAN 2003 Nilai 9 4 Jawab : b  lim  (2 x + 1) −  x→∞ 4 x 2 − 3x + 6  =   … a. 3 4 d. 2 b. 1 c. e. 7 4 5 2 Jawab : c 4. EBTANAS 2002 2 Nilai lim ( x − x − 5 x ) = … x→∞ a. 0 d. 2,5 141 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com b. 0,5 c. 2 e. 5 Jawab : d KUMPULAN SOAL SKL UN 2011 INDIKATOR 24 Menghitung nilai limit fungsi aljabar dan fungsi trigonometri x 2 − 5x + 6 1. Nilai dari lim x 2 + 2x − 8 c. 1 3 x →2 a. 2 b. 1 d. 2. Nilai lim a. 3 b. 2 3 x −1 c. 2 d. 1 1 2 a. 0 4 3 adalah …. e. ∞ 8   2 − 2  = …. 4. Nilai dari lim x → 0 x − 2 x − 4 a. 1 4 c. 2 1 2 d. 4 b. e. ∞ b. 1 6 d. 6. Nilai lim x −2 c. 8 d. 12 a. 0 b. 4 x2 − 2 x→ 2 a. 2 2 b. 2 x− 2 e. 16 e. − 2 x −1 c. – 2 d. 0 5 x + 14 − 2 c. 1,2 d. 0,8 9 − x2 4 − x2 + 7 c. d. 1 10. Nilai dari lim x →2 adalah … =… 9 4 e. 0 4 − x2 3 − x2 + 5 a. –12 b. –6 c. 0 d. 6 11. Nilai dari lim x →4 5 − x2 + 9 c. 30 d. 40  =… e. 12 48 − 3 x 2 a. 10 b. 20 e. 0,4 = …. e. 60 3x   = …. 12. Nilai dari lim x →0 9 + x − 9 − x    c. 9 d 12 13. Nilai lim x →0 e. 15 4 + 2x − 4 − 2x =… x c. 1 e. –1 d. 0  cos 4 x sin 3 x   = …. 5x   3 c. 5 e. 0 14. Nilai dari lim x →0 a. 5 3 d. 1 5 sin 12 x 15. Nilai lim =… x →0 2 x ( x 2 + 2 x − 3) a. –4 c. –2 e. 6 b. –3 d. 2 b. 1 =… x −2 x →2 1 − a. – 4 b. – 3 =… x +2 a. 8 b. 4 a. 4 b. 2 c. 2 d. 0 7. Nilai dari lim e. 1 1 2 ( x − 4) x→4 Nilai lim 1 3 c. a. 4 b. 2 a. 3 b. 6 6   1 − 2 =… 5. Nilai lim x →3 x − 3 x − 9 a. − 1 6 8. Nilai xlim2 →− 9. Nilai lim x →3 e. –1 x 2 + x − 12 27 c. 7 5 d. 4 x →3 b. =… x3 − 8 3. Nilai dari lim e. −1 6 1 2 x 2 − 5x + 4 x →1 =… = …. e. ∞ 142 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com 16. Nilai lim x→2 a. – b. – 1 2 1 3 sin( x − 2) 2 x − 3x + 2 a. – 2 =… c. 0 d. b. – e. 1 b. 1 8 1 6 c. d. 1 4 1 2 e. 1 23. Nilai lim x →0 b. d. e. 1 4 8 9 2 b. 9 a.  sin x + sin 5 x   = …. 19. Nilai dari lim x →0 6x  c. 1 2 b. 1 d. 20. Nilai lim π x→ a. – b. – 1 2 1 3 3 e. –1 1 3 − x 2 3 c. 3 d. –2 e. –3 3 2 9 1 b. 3 3 =… 1 − cos 2 x tan 2 3x 1 c. 9 4 x tan x x →0 1 − cos 6 x c. e. 8 = …. e. − 6 9 = …. 4 9 d. a. =… e. 1 d. 0 25. Nilai dari lim cos x − sin π 6 π 6 x2 c. 2 d. 4 24. Nilai dari lim x →0 1 16 a. 2 2 1 − cos 4 x a. –8 b. –4 c. 0 −1 4 d. 2 e. 2 2 2 22. Nilai lim  1 − cos 2 x  = … 18. Nilai lim  x →0 1 − cos 4 x  a. − 1 2 1 2 2 x sin 3 x =… x →0 1 − cos 6 x a. –1 c. 0 1 b. – 3 d. 1 3 1 2  1 − cos 2 x  = … 17. Nilai lim  x→0 2 x sin 2 x  a. 1 2 c. 2 3 e. 4 3 x 2 + 6x + 9 x → 3 2 − 2 cos( 2 x + 6) − 26. Nilai dari lim 3 adalah .. a. 3 cos 2 x lim 21. Nilai dari π cos x − sin x = … x→ c. b. 1 d. 1 2 1 3 e. 1 4 4 143 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu
  • LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com 16. Nilai lim x→2 a. – b. – 1 2 1 3 sin( x − 2) 2 x − 3x + 2 a. – 2 =… c. 0 d. b. – e. 1 b. 1 8 1 6 c. d. 1 4 1 2 e. 1 23. Nilai lim x →0 b. d. e. 1 4 8 9 2 b. 9 a.  sin x + sin 5 x   = …. 19. Nilai dari lim x →0 6x  c. 1 2 b. 1 d. 20. Nilai lim π x→ a. – b. – 1 2 1 3 3 e. –1 1 3 − x 2 3 c. 3 d. –2 e. –3 3 2 9 1 b. 3 3 =… 1 − cos 2 x tan 2 3x 1 c. 9 4 x tan x x →0 1 − cos 6 x c. e. 8 = …. e. − 6 9 = …. 4 9 d. a. =… e. 1 d. 0 25. Nilai dari lim cos x − sin π 6 π 6 x2 c. 2 d. 4 24. Nilai dari lim x →0 1 16 a. 2 2 1 − cos 4 x a. –8 b. –4 c. 0 −1 4 d. 2 e. 2 2 2 22. Nilai lim  1 − cos 2 x  = … 18. Nilai lim  x →0 1 − cos 4 x  a. − 1 2 1 2 2 x sin 3 x =… x →0 1 − cos 6 x a. –1 c. 0 1 b. – 3 d. 1 3 1 2  1 − cos 2 x  = … 17. Nilai lim  x→0 2 x sin 2 x  a. 1 2 c. 2 3 e. 4 3 x 2 + 6x + 9 x → 3 2 − 2 cos( 2 x + 6) − 26. Nilai dari lim 3 adalah .. a. 3 cos 2 x lim 21. Nilai dari π cos x − sin x = … x→ c. b. 1 d. 1 2 1 3 e. 1 4 4 143 Kemampuan mengerjakan soal akan terus meningkat jika terus berlatih mengerjakan ulang soal yang lalu