Your SlideShare is downloading. ×
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
FW:
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

FW:

2,538

Published on






_________________________________________________________________
Windows Live™: Keep your life in sync.
http://windowslive.com/explore?ocid=TXT_TAGLM_BR_life_in_synch_052009

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,538
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  1. ! ! ! ! ! ! ! ! ! ! ! ! ! Tracking Control System of the Two Axes Passive Solar Tracker ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  2. (95 7 ) ! K W W S E O R J O L E Q F X H G X W Z S O R J
  3. (high concentrated photovoltaic, HCPV) HCPV 0.5° Labview Labview 0.2° 0.1° (collimating tube) 0.5° HCPV I
  4. The purpose of this research is to develop a passive sun-tracking control system for high concentrated photovoltaics (HCPV), which uses two axes tracking mechanisms. HCPV uses III-V solar cell which has higher efficiency and can only absorb the direct solar irradiation. In order to reducing the error of incident angle, which causing degradation of insolation absorption of the solar cell, the precision of tracker is set to be smaller than 0.5°. The passive tracking adopted in this study is utilizing the horizontal coordinates of astronomy, which depends on the latitude, longitude and time zone of the tracker’s location to calculate the altitude and azimuth of the solar. The stepping motor, which drive the tracking mechanisms, is chosen to provide adequate rotating torque for mechanism and rpm for coping with rapid motion of the solar trajectories (particularly in the noon). This control system is programming with Labview software. When the solar altitude and solar azimuth move at angle of 0.2°, the controller drives the stepping motor to actuate the tracker. A collimating tube with an accuracy of 0.1° is used to measure the error of tracking angle, and recorded the light spot in the collimating tube with a digital camera to analyzing the error distribution. At the outdoor test, experiment results show that the average angle error is less than 0.5° and which prove the feasibility of the passive sun-tracking system can be used in HCPV. Key word: HCPV, two axes passive solar tracker, sun-tracking control system II
  5. III
  6. ....................................................................................................................I .................................................................................................................. II ........................................................................................................................ III ........................................................................................................................ IV ..................................................................................................................... VI ..................................................................................................................... IX .................................................................................................................. X ................................................................................................. 1 1-1 ..................................................................................................... 1 1-2 ........................................................................................ 3 1-3 .................................................................................................... 4 .............................................................................................. 5 2-1 ............................................................................................ 5 2-1-1 ..................................................................................... 5 2-1-2 ...................................................................................... 5 2-1-3 ..................................................................................... 6 2-1-4 .......................................................................... 6 2-2 ................................................................. 7 2-2-1 ..................................................................................... 7 2-2-2 ..................................................................................... 8 2-2-3 ......................................................................................... 8 2-2-4 .......................................................................... 9 2-3 ............................................................ 10 IV
  7. 2-4 ....................................................................... 10 ........................................................................................ 12 3-1 ...................................................................................... 12 3-2 .......................................................................................... 12 3-3 .................................................................................................. 14 3-4 .......................................................................................... 15 ..................................................................... 17 4-1 .......................................................................................... 17 4-2 .......................................................................................... 18 4-2-1 ............................................................................... 18 4-2-2 ............................................................................... 19 4-2-3 ............................................................................ 20 4-2-4 ............................................................................... 21 4-3 .......................................................................................... 22 4-3-1 ....................................................................................... 23 4-3-2 ....................................................................................... 23 ........................................................................................................... 25 5-1 .......................................................................................................... 25 5-2 .......................................................................................... 25 ................................................................................................................. 27 A ................................................................................ 30 B .................................................................................... 38 V
  8. 1-1 ...................................................................... 41 1-2 Fresnel lens ..................................................................... 41 1-3 Fresnel CPV 550 ................................. 42 1-4 (a) [3] (b) 42 1-5 MicroDish HCPV .................... 43 1-6 PV-fibre HCPV (a) (b) ................. 43 1-7 (a) Tetra-Track (b) Zomeworks (thermal-liquid) (c) Lorentz ..................................................................................................... 44 1-8 .............................................................. 44 1-9 ................................................... 45 1-10 40° .......................................................................... 46 1-11 32° ...................................................................................... 46 1-12 .................................................................... 47 2-1 ................................................................................................. 48 2-2 ................................................................................................. 48 2-3 .................................................................................. 49 2-4 (a) (b) ..................... 49 2-5 ...................................................................... 50 2-6 (a) (b) .............................................. 51 2-7 (a) (b) VI
  9. ......................................................................................................... 52 3-1 .................................................................................. 53 3-2 ...................................................................................... 53 3-3 (a) PM (b)VR (c) ...................... 54 3-4 ...................................................................................... 54 3-5 0.2° (a) (b) ....................................... 55 3-6 0.2° (a) (b) ....................................... 56 3-7 ......................................................................................... 57 3-8 (a) RK564AA-T30 (b) RK564AA-T10 ....... 57 3-9 ....................................................... 58 3-10 .................................................................... 58 4-1 ................................................................................................. 59 4-2 ...................................................................................... 60 4-3 .................................................................................. 60 4-4 MathScript ................................................................ 61 4-5 (a) 0.2° (b) 0.2°........................ 61 4-6 ...................................................................................... 62 4-7 .......................................................................... 62 4-8 Sequence ............................................................................. 63 4-9 Sequence ............................................................................. 63 4-10 Sequence ........................................................................... 64 4-11 (a) (b) ........................................ 65 4-12 Sequence ........................................................................... 65 4-13 Sequence ....................................................................... 66 4-14 Sequence ....................................................................... 66 4-15 (a) (b) ..................... 67 VII
  10. 4-16 Sequence ....................................................................... 67 4-17 (a) (b) ................................................ 68 4-18 ................................................................................ 68 4-19 ........................................................................................... 69 4-20 ................................................. 69 4-21 0.6° 0.4°........................................................................... 70 4-22 2008 6 10 (a) (b) ............. 71 4-23 (a) (b) (c) ..... 72 VIII
  11. 1.1 .................................................................... 40 3.1 ......................................... 40 4.1 .......................................................................... 40 IX
  12. a (altitude) ET (equation of time) H Gs Gw lst llocal LST n tsolar α (right ascension) β (latitude) γ (azimuth) φ obliquity of the ecliptic, ε = 23°26’20.512” ε λ (longitude) δ (declination) θz X
  13. 1-1 CO2 (solar cell) (photovoltaic, PV) 1-1 15% ~ 20% III-V (multi-junction, MJ) Spectrolab 2007 40.7% (solar concentrator) (concentrated photovoltaic, CPV) CPV CPV Fresnel lens (Fresnel lens) 1-2 [1] (concentration ratio, C) (apearature area) (cell area) 1-3 1
  14. Araki [2] (dome-shaped) CPV 550 CPV 1970 CPV CPV 300 1000 HCPV (high concentrated photovoltaic) (parabolic dish)[3] (parabolic trough)[4] 1-4 (a) 1-4 (b) HCPV Kusek [5] 1-5 Anton [6] 1-6 (a) (Cassegrain) 1-6 (b) 1-7 [7-9] 1-100 mm2 Cowle [10] HCPV 1-8 1° 90% 0.5° 0.5° 2
  15. 1-2 (open-loop) (closed-loop) 20-30% [11, 12] Huang Sun [13] [14, 15] Bako [16] 1-9 40° 46 % 1-10 [17] Abdallah Nijmeh [18] PLC (pyranometer) 32° 41% 1-11 [19] 1-12 3
  16. 1-1 [20] 44% (N-S) 15% 34% 37% 1-3 HCPV 4
  17. 2-1 (ecliptic coordinates) (equatorial coordinates) (horizon coordinates) 2-1-1 (ecliptic) ( 2-1) (vernal equinox) (autumnal equinox) (obliquity of the ecliptic, ε) (ε = 23°26’20.512”) (latitude, β) (longitude, λ) (0° ~ 90°) (0° ~ -90°) 0° (0 °~ 360°) 2-1-2 5
  18. (declination, δ) (right ascension, α) ( 2-1) ±23.45° (hour angle) 24 15°(360°/24 = 15°) 2-1-3 (altitude, a) (elevation) 0° ~ (azimuth, γ) 90° (-180°) ±180° 2-2 [21] 2-1-4 (±0.064°) (2-3) 6
  19. 2-2 Cucuno [22] Goswami [23] 2-2-1 mean solar time 360 56’ 24 7
  20. (true solar time) (equation of time, ET) 15 2-3 365.2422 365 [24] LST = tsolar − ET − (−lst + llocal ) ⋅ 4min/ deg (2-1) LST lst llocal ET (2-2) B = 360( n − 81) / 364 deg ET = 9.87 sin 2 B − 7.53cos B − 1.5sin B 2-2-2 2-1-2 2-1 23.45 ±23.45° 2-4 (a) [24] 2-5 δ ±23.45 o [23, 24] δ = 23.45o sin[360(284 + n) / 365]o (2-3) n 1 1 n=1 1 1 2-2-3 24 15 0 H [23] 8
  21. H = 15o [t solar − 12] (2-4) tsolar = 12 H×4 min/deg tsolar 24 (Hsr) (Hss) H ss or H sr = ± cos −1[ − tan ϕ ⋅ tan δ ] (2-5) φ 2-2-4 2-4 (b) P (S ) (P ) θz [23] θ z = cos −1[sin ϕ sin δ + cos ϕ cos δ cos H ] (2-6) a a = sin −1[sin ϕ sin δ + cos ϕ cos δ cos H ] (2-7) γ [22, 23] cos γ = (sin a sin ϕ − sin δ ) / cos a cos ϕ (2-8) sin γ = cos δ sin H / cos a (2-9) ±180° 0° ~ 180° Cucuno [22] (2-8) (2-8) (2-9) cosγ sinγ 9
  22. 2-3 6 22 90° 12 22 40° 121.15° 24.49° 2-6 (a) ±62° 0°~43° 2-6 (b) ±120° 89° 2-4 (precession) 25868 10
  23. (nutation) (ephemeris) [25] A 2000 6000 2005 2008 2011 2-7 0.2° ( 0.5°) 11
  24. 3-1 [27] 60×60 cm2 1.5 m HCPV 180 kg 3-1 [27] 1:6.25 1:60 0°~90° ±120° HCPV 30 kg 3-2 [27] 3-2 [28] (permanent magnet, PM) (variable reluctance, VR) (hybrid) PM 3-3(a) PM 12
  25. PM PM (alnico) 45 90 (ferrite) 7.5° 15° 3-3(b) VR PM VR 15° 3-3 (c) 1.8°~3.6° 3-4 (pulses per second, pps) (start-stop region) 10 pps (slew region) 13
  26. B 3-3 3-5 (a) 3-6 (a) B [29] 2 3-6 RK564AA-T30 1:30 0.024° 4 N•m 3-8 (a) 3-5 (b) 3-6 (b) B 2 3-7 RK564AA-T10 1:10 0.072° 3 N•m 1:60 1:6.25 3-8 (b) 3-1 B 14
  27. 3-4 pulse generator 3-9 Adventech ADAM-3952 DIN 50- SCSI (CW/CCW) 3-10 Adventech PCI-1240U 15
  28. 16
  29. 4-1 National Instrument Labview 8 Labview Labview I/O Labview 4-1 [27] 0.2° 0.5° 0.2° 0.3° 0.2° 1-9 1-10 17
  30. 4-2 (sub VI) 4-2-1 Labview Labview Labview 4-2 Get Date/Time String Format Date/Time String %H %M %S Decimal String To Number Get Date/Time In Seconds Seconds To Date/Time 18
  31. UnBundle day of year 4-3 4-2-2 Labview M file MathScript MATLAB MathScript 4-4 (shift register) 3-4 3-5 0.2° 0.067° 0.2° Case true false Case true false 0.2° true 4-5 (a) 0.2° false 4-5 (b) millisecond multiple (ms) 0.2° 19
  32. 4-6 4-2-3 Labview PCI-1240U 4-7 End position Az Alt Driving speed (pps) 6000 pps Movement mode (relative) (absolute) 1000 200 800 1200 error out P1240DevOpen P1240Mot Reset Labview ID 0 Sequence Sequence 4-8 X Y 268435455 ~ 20
  33. -268435455 2147483648 ~ -2147483647 Sequence 4-9 P1240MotWrReg For P1240MotSavePara Sequence 4-10 P1240MotPtp Case true false 4-11 (a) false 4-11 (b) P1240MotStop true Sequence 4-12 P1240MotDevClose 4-2-4 4-2-2 Sequence Sequence 4-13 0.2° 4-14 0.2° Case Sequence 0.2° 0.2° Case true 21
  34. 4-15 (a) 0.2° Case 4-15 (b) 4-2-1 Sequence 4-16 Case true 4-17 (a) false 4-17 (b) 4-18 Labview Run 6000 pps 8000 pps 4-3 0.5° (collimating tube) (light spot) 4-19 4 mm 0.02° 0.1° 0.2° 0.3° 0.4° 0.6° 0.8° 4-1 22
  35. 4-3-1 4-20 4-21 4-3-2 2008 6 10 4-22 (a) 12:30 12:50 0.5° (b) 11:35 11:45 0.6° 23
  36. 4-23 (a) 0.2° (b) 0.4° (c) (c) 0.31° 0.5° 24
  37. 5-1 HCPV Labview 0.31° [27] HCPV 5-2 1. 25
  38. 2. 3. (position sensitive device, PSD) [31] PSD 26
  39. 1. C. Sierra, A. J. Va´ Zquez, “high solar energy concentration with a fresnel lens,” J. Mterials Science 40, pp. 1339-1343, 2005. 2. K. Araki, H. Uozumi, T. Egami, M. Hiramatsu, Y. Miyazaki, Y. Kemmoku, A. Akisawa, N. J. Ekins-Daukes, H. S. Lee, M. Yamaguchi “Development of concentrator modules with dome-shaped Fresnel lenses and triple-junction concentrator cells,” Prog. Photovolt: Res. Appl. 13, pp. 513-527, 2005. 3. SES http://stirlingenergy.com/ 4. NREL http://www.nrel.org 5. S. Kusek, J. Karni, M. Caraway, M. Lynn, “Description and performance of the microdish concentrating photovoltaic system,” 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, pp.229-232, 2007. 6. I. Anton, D. Silva, G. Sala, A.W. Bett, G. Siefer, I. Luque-Heredia, T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt: Res. Appl. 15, pp. 431-447, 2006. 7. Tetra-Track http://www.dobontech.com 8. Zomeworks http://www.zomeworks.com 9. Lorentz http://www.lorentz.de 10. S. Cowley, S. Horne, S. Jensen, R. MacDonald, “Acceptance angle requirements for point focus CPV systems,” 4th Inter. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, 2007 11. .E. Lorenzo, M. P’ erez, A. Ezpeleta, J. Acedo, “Design of tracking photovoltaic systems with a single vertical axis,” Prog. Photovolt: Res. Appl. 10, pp.553-543, 27
  40. 2002. 12. V. Poulek, M. Libra, “New solar tracker,” Solar Energy energy Materials materials and Solar Cell 51, pp.113-120, 1998. 13. B. J. Huang, F. S. Sun, “Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector,” Energy Conversion and Management 48, pp. 1273-1280, 2007. 14. 2003 . 15. F. M. Al-naima, N. A. Yaghobian, “Design and construction of a solar tracking system,” Solar Wind Technology 7, pp. 611-617, 1990. 16. G. Bakos, “Design and construction of a two-axis sun tracking system for parabolic trough collector (PTC) efficiency improvement,” Renewable Energy 31, pp. 2411-2421, 2006. 17. P. Roth, A. Georgiev, H. Boudinov, “Design and construction of a system for sun-tracking,” Renewable energy 29, pp. 393–402, 2004. 18. S. Abdallah, S. Nijmeh, “Two axes sun tracking system with PLC control,” Energy Conversion and Management 45, pp. 1931–1939, 2004. 19. F.R. Rubio, M.G. Ortega, F. Gordillo, M. Lo’ pez-Martı’ nez, “Application of new control strategy for sun tracking,” Energy Conversion and Management 48, pp. 2174–2184, 2007. 20. S. Abdallah, “The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics,” Energy Conversion and Management 45, pp. 1671-1679, 2004. 21. http://zh.wikipedia.org/w/index.php?title=%E9%A6%96%E9%A1%B5variant =zh-tw 28
  41. 22. M. Cucuno, D. Kaliakatsos, V. Marinelli, “General calculation methods for sorlar trajectories,” Renewable Energy 11, pp. 223-234, 1997. 23. D. Yogi Goswami, F. Kreith, Jan F. Kreider, Principle of Solar Engineering, Taylor Francis, 2nd Ed., 1999. 24. “ ” 25 , pp. 2148-2153, 2004. 25. I. Reda, A. Andreas, “Solar position algorithm for solar radiation applications,” NREL/TP-560-34302, January 2008. 26. http://eclipse.gsfc.nasa.gov/SEcat5/deltatpoly.html 27. 2008 28. 1994 29. http://www.orientalmotor.com.tw/ 30. http://www.advantech.tw/ 31. A. Luque and V. Andreev, Concentrator Photovoltaics, Chapter 11, Springer-Verlag Berlin Heidelberg 2007. 29
  42. A A-1 Reda Andreas [25] 0.0003° 2000 6000 A-2 (Julian day) JD 4713 1 1 12 ( ) JD=365.25× Y + 4716) + 30.6001×(M + 1) + D + B 1524.5 (A1) Y 2000 2003 M 1 M3 M Y Y=Y 1 M=M +12 D decimal time 2 12 30 30 (UT) D=2.521180556 B JD2299160 (Julian calendar) B=0 JD2299160 (Gregorian calendar) B=2 A + A/4 A = Y/100 30
  43. (Julian Ephemeris Day, JDE) ∆T JDE = JD + (A2) 86400 (Julian century, JC) (Julian Ephemeris Century, JCE) JD − 2451545 (A3) JC = 36525 JDE − 2451545 (A4) JCE = 36525 (Julian Ephemeris Millennium, JME) JCE (A5) JME = 10 ∆T (Terrestrial Time, TT) NASA [26] ∆T ∆T 1986 2005 ∆T = c0 + c1t c2t2 + c3t3 + c4t4 + c5t5 (A6) c0=64.86, c1=0.3345, c2=0.060374, c3=0.0017275, c4=0.000651814, c5=0.00002373599 t = y – 2000 y = +( – 0.5)/12 2005 2050 ∆T = c0 + c1t + c2t2 (A7) c0=62.92, c1=0.32217, c2=0.005589 t y (A6) ∆T NASA [26] 1999 3000 A-3 [25] (Earth periodic terms) L0 31
  44. L0i = Ai × cos( Bi + Ci × JME ) (A8) L0 = ∑ L0 i n (A9) i =0 Ai Bi Ci A-1 L0 i n L0 L1 L2 L3 L4 L5 (A7) (A8) L( ) L0 + L1 × JME + L2 × JME 2 + L3 × JME 3 + L4 × JME 4 + L5 × JME 5 L= 108 (A10) L(in radians) × 180 L(in degree) = π (A11) L 0°~360° B R (A8) ~ (A11) A-4 A-3 L B β Θ: Θ = L + 180 (A12) 0° ~ 360° β = −B (A13) A-5 (A14) ~ (A18) (elongation) 32
  45. JCE 3 X 0 = 297.85036 + 445267.11148 × JCE − 0.0019142 × JCE 2 + 189474 (A14) (anomaly) JCE 3 X 1 = 357.52772 + 35999.05034 × JCE − 0.0001603 × JCE − 2 300000 (A15) JCE 3 X 2 = 134.96298 + 477198.867398 × JCE + 0.0086972 × JCE 2 + 56250 (A16) (argument of latitude) JCE 3 X 3 = 93.27191 + 483202.017538 × JCE − 0.0036825 × JCE 2 + 327270 (A17) (longitude of the ascending node) JCE 3 X 4 = 125.04452 − 1934.136261× JCE + 0.0020708 × JCE 2 + 450000 (A18) ∆ψi ∆εi A-2 (A19) (A20) ∆ψ i = (ai + bi × JCE ) × sin(∑ X j × Yi , j ) 4 (A19) j=0 ∆ε i = (ci + di × JCE ) × cos(∑ X j × Yi , j ) 4 (A20) j =0 a i, bi, ci, di a, b, c, d i Xj (A14) ~ (A18) X0 ~ X4 Yi,j Y0 ~ Y4 i [25] ∆ψ ∆ε ∑ ∆ψ n i ∆ψ = i =0 36000000 (A21) ∑ ∆ε n i ∆ε = i =0 36000000 (A22) 33
  46. A-6 (A13) 0° A-5 A-2 λ ( ) λ = Θ + ∆ψ + ∆τ (A23) 20.4898 ∆τ = − ∆ψ 3600R A-7 (ε = 23°26’ 20.512” ) ∆ε) ( (mean obliptic of the ecliptic, ε0) ε0 ε 0 = 84381.448 − 4680.93U − 1.55U 2 + 1999.25U 3 − 51.38U 4 − 249.67U 5 (A24) − 39.05U 6 + 7.12U 7 + 27.87U 8 + 5.79U 9 + 2.45U 10 U=JME/10 ε ε0 ε= + ∆ε 3600 (A25) A-8 34
  47. (mean sidereal time in Greenwich, ν0) ν 0 = 280.46061837 + 360.98564736629 × ( JD − 2451545) + JC 3 0.000387933 × JC 2 − 38710000 (A26) α δ A-9 α δ (observer local angle, H) sin λ cos ε − tan β sin ε tan α = cos λ (A27) sin δ = sin β cos ε + cos β sin ε sin λ (A28) α 0° ~ 360° H = ν + llocal − α (A29) ν llocal A-10 (A27)~(A29) (parallax) 8.794 ξ= 3600 × R (A30) u tan u = 0.99664719 × tan ϕ (A31) 35
  48. φ x E x = cos u + × cos ϕ 6378140 (A32) E y E y = 0.99664719 × sin u + × sin ϕ 6378140 (A33) A-11 ∆α − x sin ξ sin H tan( ∆ α ) = cos δ − x sin ξ cos H (A34) δ’ (sin δ − y sin ξ ) cos(∆α ) tan δ '= cos δ − x sin ξ cos H (A35) H’ H ' H − ∆α = (A36) ξ, x, y A-10 A-12 (A35) (A36) (2-7) a0 P 283 1.02 ∆a = × × 1010 273 + T 60 tan( a + 10.3 ) a0 + 5.11 0 (A37) P T (2-7) (A37) a' a ' a0 + ∆a = (A38) 36
  49. (A35) ~ (A38) (2-8) (2-9) γ’ 37
  50. B B-1 3-4 3-5 0.2° 3-2 0.00033°/s 0.06°/s rpm 0.00033°/s×π/180°[rads]×60/2π[rpm] = 0.00055 rpm (B1) 0.06°/s×π/180°[rads]×60/2π[rpm] = 0.01 rpm (B2) (B1) (B2) (Gs) (Gw) 0.00055 rpm×6.25 Gs ×60 Gw 0.21 rpm (B3) 0.01 rpm×6.25 Gs ×60 Gw 3.75 rpm (B3) 38
  51. B-2 100 kg 50% 80% 5.72° 100 kg × sin(5.72°) = 9.965 kg (B4) 0.35 m T T = 9.965 kg × 0.35 m × 9.81 m/s2 = 34.22 N.m (B5) 2 T0 T0 = 34.22 N.m / (60×6.25×0.8×0.5)×2 = 0.43 N.m (B6) 0.2 m T1 T1 = (100 kg×0.2 m×9.81 m/s2) / (60×6.25×0.8×0.5)×2 = 1.31 N.m (B7) 39
  52. 1-1 3-1 (rpm) (N•m) (rpm) 0.00055 : RK564AA-T30 1.31 0.21 ( 1:30 1:60 : ) 1:6.25 0.01 : RK564AA-T10 0.43 3.75 ( 1:10 1:60 : ) 1:6.25 4-1 H 2 2 0 400 0 0 0 2.69812 2 0.69812 400 0.0017453 0.10004894 0.1 3.39556 2 1.39556 400 0.0034889 0.19999983 0.2 4.09335 2 2.09335 400 0.00523338 0.29999965 0.3 4.79116 2 2.79116 400 0.0069779 0.40000051 0.4 6.18682 2 4.18682 400 0.01046705 0.60000006 0.6 7.5825 2 5.5825 400 0.01395625 0.79998787 0.8 8.97894 2 6.97894 400 0.01744735 1.00006509 1 40
  53. 1-1 [3] 1-2 Fresnel lens [1] 41
  54. 1-3 Fresnel CPV 550 [2] (a) (b) 1-4 (a) [3] (b) [4] 42
  55. 1-5 MicroDish HCPV [5] (a) (b) 1-6 PV-fibre HCPV (a) (b) [6] 43
  56. (a) (b) (c) 1-7 (a) Tetra-Track [7] (b) Zomeworks (thermal-liquid) [8] (c) Lorentz 1-8 500 [10] 44
  57. 1-9 [16] 45
  58. 1-10 40° [16] 1-11 32° [18] 46
  59. 1-12 [19] 47
  60. 2-1 [21] 2-2 ( ) ( ) ( ) [21] 48
  61. 2-3 (a) (b) 2-4 (a) (b) [23] 49
  62. 2-5 50
  63. (a) (b) 2-6 (a) (b) 51
  64. (a) (b) 2-7 (a) (b) 52
  65. 3-1 [27] 3-2 53
  66. (a) (b) (c) 3-3 [28] (a) PM (b)VR (c) 3-4 [28] 54
  67. (a) (b) 3-5 0.2° (a) (b) 55
  68. (a) (b) 3-6 0.2° (a) (b) 56
  69. 3-7 [29] (a) (b) 3-8 (a) RK564AA-T30 (b) RK564AA-T10 [29] 57
  70. 3-9 3-10 58
  71. 4-1 59
  72. 4-2 4-3 60
  73. 4-4 MathScript (a) (b) 4-5 (a) 0.2° (b) 0.2° 61
  74. 4-6 4-7 62
  75. 4-8 Sequence 4-9 Sequence 63
  76. 4-10 Sequence 64
  77. (a) (b) 4-11 (a) (b) 4-12 Sequence 65
  78. 4-13 Sequence 4-14 Sequence 66
  79. (a) (b) 4-15 (a) (b) 4-16 Sequence 67
  80. (a) (b) 4-17 (a) (b) 4-18 68
  81. 4-19 4-20 69
  82. 4-21 0.6° 0.4° 70
  83. (a) (b) 4-22 2008 6 10 (a) (b) 71
  84. (a) (b) (c) 4-23 (a) (b) (c) 72

×