Your SlideShare is downloading. ×
0
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Mongo db – document oriented database
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Mongo db – document oriented database

4,012

Published on

Published in: Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
4,012
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
23
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Wojciech Sznapka<br />13.05.2011<br />MongoDB – document oriented databaseDoes NoSQL make sense?<br />
  • 2. Agenda<br />NoSQL – definition and solutions,<br />MongoDB – description and feautres,<br />MongoDB usage,<br />Who uses it?<br />Schema-free,<br />Some live examples,<br />Does NoSQL make sense?<br />
  • 3. NoSQL<br />It’s a class of database management systems, the alternative for relational databases (RDBM). Sometimes people call they „next generation databases”,<br />NoSQL databases haven’t got schema like relational systems, there’s no table joining and have good scalling facilities.<br />
  • 4. NoSQL solutions<br />Document oriented:<br />MongoDB<br />Apache CouchDB<br />Key Value storage:<br />Big Table (Google App Engine)<br />Dynamo (Amazon Web Services)<br />Apache Cassandra (Facebook)<br />Project Voldemort (LinkedIn)<br />
  • 5. MongoDB<br />Document Oriented – stores JSON documetns ,<br />Very efficient (written in C++),<br />High scallable,<br />Schema-free – high flexibility,<br />Supports many software platform and has plenty programming language drivers (PHP, .NET, Java, Python, Ruby, etc.),<br />Developping since August 2007, first release in 2009,<br />Open Source (GNU AGPL).<br />
  • 6. MongoDB features<br />Stores dynamic JSON documents (internally represented as BSON – Binary JSON),<br />Full support for indicies,<br />Replication and high availability,<br />Complex queries (which are also represented as JSONs),<br />Map/Reduce mechanism – handy way of aggregation and processing data (combination of SQL’s Group By and stored procedures),<br />GridFS – mongo’s file system, which allows to store files in database.<br />
  • 7. Where it applies?<br />Web appliactions (logging, caching, processing huge amount of data),<br />High load / high scalabillity,<br />GIS solutions (it supports 2d geospatial indicies – longitude/latitude)<br />Where it shouldn’t be used?<br />High transactional operations (no support for ACID principle),<br />Cases which needs SQL (many joins for example)<br />
  • 8. Who uses it?<br />
  • 9. MongoDB vs. SQL<br />
  • 10. Schema-free – no migrations!<br />MongoDB (as every NoSQL solution) is schema-free, so if we need to put new field into existing document, we don’t need to do extra things, like Alter Table in SQL database. We just start using document with new field,<br />It means, that we don’t need to care about an migrations – it’s done transparently.<br />
  • 11. Examples<br />Document,<br />Aggregated document,<br />Sorting, limiting,<br />Advanced searching (including regexp),<br />PHP code.<br />
  • 12. CRUD on Documents<br />> db.foo.insert({name: "Wojciech", age: 25, tags: ["male", "developer"]})<br />> db.foo.insert({name: "Andreea", tags: ["female", "rt master"]})<br />> db.foo.insert({name: "Okky", tags: ["male", "developer"]})<br />> db.foo.update({name: "Wojciech"}, {$set: {surname: "Sznapka"}})<br />> db.foo.remove({name: "Okky"});<br />> db.foo.find()<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea", "tags" : [ "female", "rt master" ] }<br />{ "_id" : ObjectId("4dcd13ce7ffde8d258900f7c"), "name" : "Okky", "tags" : [ "male", "developer" ] }<br />{ "_id" : ObjectId("4dcd13647ffde8d258900f7a"), "age" : 25, "name" : "Wojciech", "surname" : "Sznapka", "tags" : [ "male", "developer" ] }<br />> db.foo.find({tags: "rt master"})<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea", "tags" : [ "female", "rt master" ] }<br />
  • 13. Aggregated documents<br />> db.logs.insert({msg: "error occured", details: {line: 2, severity: 3}})<br />> db.logs.insert({msg: "user logged in", details: {severity: 10}})<br />> db.logs.find({'details.severity': 10})<br />{ "_id" : ObjectId("4dcd15d77ffde8d258900f7e"), "msg" : "user logged in", "details" : { "severity" : 10 } }<br />
  • 14. Sorting and limiting<br />> db.foo.find({}, {name: 1}).sort({name: -1})<br />{ "_id" : ObjectId("4dcd13647ffde8d258900f7a"), "name" : "Wojciech" }<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea" }<br />> db.foo.find().limit(1)<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea", "tags" : [ "female", "rt master" ] }<br />
  • 15. Sorting and limiting<br />> db.foo.find({}, {name: 1}).sort({name: -1})<br />{ "_id" : ObjectId("4dcd13647ffde8d258900f7a"), "name" : "Wojciech" }<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea" }<br />> db.foo.find().limit(1)<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea", "tags" : [ "female", "rt master" ] }<br />
  • 16. Advanced queries<br />> db.foo.find({tags: "developer", age: {$exists: true}})<br />{ "_id" : ObjectId("4dcd13647ffde8d258900f7a"), "age" : 25, "name" : "Wojciech", "surname" : "Sznapka", "tags" : [ "male", "developer" ] }<br />> db.foo.find({name: /a$/}, {name: 1})<br />{ "_id" : ObjectId("4dcd13b37ffde8d258900f7b"), "name" : "Andreea" }<br />{ "_id" : ObjectId("4dcd17ae7ffde8d258900f80"), "name" : "Tamara" }<br />
  • 17. PHP example<br /><?php<br />$mongo = new Mongo();<br />$db = $mongo->foo;<br />$collection = $db->foo;<br />$wojtek = array("name" => "Wojciech", "tags" => array("male", "developer"), "age" => 25);<br />$okky = array("name" => "Okky", "tags" => array("male", "developer"));<br />$collection->insert($wojtek);<br />$collection->insert($okky);<br />$cursor = $collection->find();<br />foreach ($cursor as $document) {<br /> printf("Name: %sn", $document["name"]);<br />}<br />
  • 18. Does NoSQL make sense?<br />Yes, if we will use NoSQL databases along with SQL, if they are needed. Dropping SQL databases completly isn’t the best idea for huge and complicated applications, but supplementing data model with NoSQL database (like MongoDB), can improve application performance and shorten development process,<br />It should be rather „Not onyl SQL”.<br />
  • 19. Thank you for an attention<br />Any questions<br />?<br />

×