• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Mk
 

Mk

on

  • 475 views

 

Statistics

Views

Total Views
475
Views on SlideShare
468
Embed Views
7

Actions

Likes
0
Downloads
0
Comments
0

2 Embeds 7

http://handreslm.blogspot.com 4
http://handreslm.blogspot.ru 3

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Mk Mk Presentation Transcript

    • Sede: soto la marina. Alumno: Hugo Andres Cañas Mtz.
    • ESTANDARES IEEE 802 (origen).   En 1980 el IEEE comenzó un proyecto llamado estandar 802 basado en conseguir un modelo para permitir la intercomunicación de ordenadores para la mayoría de los fabricantes. Para ello se enunciaron una serie de normalizaciones que con el tiempo han sido adaptadas como normas internacionales por la ISO. El protocolo 802 está dividido según las funciones necesarias para el funcionamiento de las LAN. El estandar o protocolo 802 cubre los dos primeros niveles del modelo OSI ya que entiende (OSI) que los protocolos de capas superiores son independientes de la arquitectura de red. Los dos niveles corresponden al nivel físico y al nivel de enlace, éste último dividido en el control de enlace lógico(LLC) y control de acceso al medio(MAC). Es un estudio de estándares perteneciente al Instituto de Ingenieros Eléctricos y Electrónicos (IEEE), que actúa sobre Redes de Ordenadores, concretamente y según su propia definición sobre redes de área local (RAL, en inglés LAN) y redes de área metropolitana (MAN en inglés).
    • Ejemplo de IEEE 802
    • Control de Acceso al medio (MAC) en IEEE 802.5 Este método consiste en que existe una trama pequeña llamada testigo, que circula por la red cuando no hay ninguna estación transmitiendo. Cuando una estación desea transmitir, cuando le llega el testigo, lo coge, le cambia un cierto bit y le añade la trama de datos. Después envía la trama obtenida a su destino. Como el testigo ya no existe, las demás estaciones no pueden trasmitir. Cuando la trama enviada da toda la vuelta a la red, es captada otra vez por el emisor y éste introduce un nuevo testigo en la red. De esta forma, ya es posible que otra estación pueda emitir. Para baja carga de la red, este sistema es poco eficiente, pero para cargas altas, es similar a la rotación circular, sistema muy eficiente y equitativo. Una desventaja seria es que se pierda el testigo, en cuyo caso toda la red se bloquearía. Los bits que se modifican en el anillo indican si la trama que acompaña al anillo ha llegado a su destino, si no ha llegado o si ha llegado pero no se ha copiado. Esta información de control es muy importante para el funcionamiento del sistema.
    • Interfaz de datos transmitida por fibras FDDI. La interfaz de datos distribuidos por fibra o FDDI (en su sigla inglesa) es una red de fibra óptica en forma de anillo (del tipo conocido como token ring) que permite transmitir datos a una tasa de 100 Mbps a distancias de 200 kilómetros (a velocidades mayores, disminuye el alcance de la red). El diseño de las interfaces FDDI garantiza la transmisión de datos en tiempo real con bajas tasas de error (menos de un bit erróneo o de un paquete perdido por cada 2,5 * 1010 transmitido), para lo cual la fibra óptica es un medio idóneo. Aunque las FDDI pueden utilizarse como redes de área local, su gran ancho de banda y el funcionamiento a distancias medias hacen que sea frecuente su empleo como backbone de redes LAN de cobre.
    • El tipo de fibra óptica empleado en las redes FDDI es multimodo, más económico y con un mayor diámetro de entrada (requiere menor precisión) que las fibras monomodo, aunque con mayores limitaciones en las tasas de transmisión que puede alcanzar. Con un criterio similar, los emisores empleados en las redes FDDI son de tipo LED (diodos emisores de luz), más económicos y menos potentes que los láser, pero suficiente para las especificaciones de este tipo de redes. Además, los LED son menos peligrosos para los usuarios, que no suelen ser conscientes del peligro de exponerse a la salida de una fibra óptica conectada a un láser que puede emitir radiación en una banda del espectro que no es visible por el ojo humano pero que puede dañarlo.
    • Para hacer la red más robusta, en realidad el cableado de las FDDI consta de dos anillos de fibra, por cada uno de los cuales se emiten paquetes en sentido contrario al otro. Con este sistema, si un enlace entre dos nodos de la red deja de estar operativo, la información siempre podrá ser transmitida por el otro anillo en sentido contrario. De hecho, si los dos anillos se rompieran en el mismo punto, la red se cerraría en los nodos de los extremos y quedaría formado un único anillo que seguiría funcionando, tal y como aparece en la figura. Los nodos conectados a ambos anillos se denominan de clase A, mientras que los de clase B se conectan a un único anillo, pudiendo constar una red FDDI de nodos de un tipo, del otro o de ambos.
    • Ethernet e IEEE 802.3 Ethernet fue creado por Xerox pero fue desarrollado conjuntamente como estándar en 1980 por Digital Equipment Corporation, Intel y Xerox. Este estándar comenzó conociéndose como Ethernet DIX, en referencia a los nombres de los creadores. Ethernet tiene un rendimiento (throughput)de 10 Mbps y usa un método de acceso por detección de portadora (CSMA/CD). El IEEE 802.3 también define un estándar similar con una ligera diferencia en el formato de las tramas. Todas las adaptaciones del estándar 802.3 tienen una velocidad de transmisión de 10 Mbps con la excepción de 1Base-5, el cual transmite a 1 Mbps pero permite usar grandes tramos de par trenzado. Las topologías más usuales son: 10Base-5;10Base-2 y 10Base-T ,donde el primer número del nombre señala la velocidad en Mbps y el número final a los metros por segmento(multiplicandose por 100).Base viene de banda base (baseband) y Broad de banda ancha (broadband). Ethernet e IEEE 802.3 especifican tecnologías muy similares, ambas utilizan el método de acceso al medio CSMA/CD, el cual requiere que antes de que cualquier estación pueda transmitir, debe escuchar la red para determinar si actualmente esta en uso. Si es así, la estación que desea transmitir espera y si la red no está en uso, la estación transmite.
    • Ethernet e IEEE 802.3
    • Similitudes entre Ethernet y IEEE 802.3 Una de las diferencias entre el formato de las dos tramas está en el preámbulo. El propósito del preámbulo es anunciar la trama y permitir a todos los receptores en la red sincronizarse a sí mismos a la trama entrante. El preámbulo en Ethernet tiene una longitud de 8 bytes pero en IEEE 802.3 la longitud del mismo es de 7 bytes, en este último el octavo byte se convierte en el comienzo del delimitador de la trama. La segunda diferencia entre el formato de las tramas es en el campo tipo de trama que se encuentra en la trama Ethernet. Un campo tipo es usado para especificar al protocolo que es transportado en la trama. Esto posibilita que muchos protocolos puedan ser transportados en la trama. El campo tipo fue reemplazado en el estándar IEEE 802.3 por un campo longitud de trama, el cual es utilizado para indicar el numero de bytes que se encuentran en el campo da datos. La tercera diferencia entre los formatos de ambas tramas se encuentra en los campos de dirección, tanto de destino como de origen. Mientras que el formato de IEEE 802.3 permite el uso tanto de direcciones de 2 como de 6 bytes, el estándar Ethernet permite solo direcciones de 6 Bytes. El formato de trama que predomina actualmente en los ambientes Ethernet es el de IEEE 802.3, pero la tecnología de red continua siendo referenciada como Ethernet.
    • Ethernet usa el método de transmisión CSMA/CD Todos los equipos de una red Ethernet están conectados a la misma línea de transmisión y la comunicación se lleva a cabo por medio de la utilización un protocolo denominado CSMA/CD (Carrier Sense Multiple Access with Collision Detect que significa que es un protocolo de acceso múltiple que monitorea la portadora: detección de portadora y detección de colisiones). Con este protocolo cualquier equipo está autorizado a transmitir a través de la línea en cualquier momento y sin ninguna prioridad entre ellos. Esta comunicación se realiza de manera simple: Cada equipo verifica que no haya ninguna comunicación en la línea antes de transmitir. Si dos equipos transmiten simultáneamente, entonces se produce una colisión (o sea, varias tramas de datos se ubican en la línea al mismo tiempo). Los dos equipos interrumpen su comunicación y esperan un período de tiempo aleatorio, luego una vez que el primero ha excedido el período de tiempo, puede volver a transmitir.
    • CSMA/CD y las Colisiones El primer paso a la hora de transmitir será saber si el medio está libre. Para eso escuchamos lo que dicen los demás. Si hay portadora en el medio, es que está ocupado y, por tanto, seguimos escuchando; en caso contrario, el medio está libre y podemos transmitir. A continuación, esperamos un tiempo mínimo necesario para poder diferenciar bien una trama de otra y comenzamos a transmitir. Si durante la transmisión de una trama se detecta una colisión, entonces las estaciones que colisionan abortan el envío de la trama y envían una señal de congestión denominada jamming. Después de una colisión (Los host que intervienen en la colisión invocan un algoritmo de postergación que genera un tiempo aleatorio), las estaciones esperan un tiempo aleatorio (tiempo de backoff) para volver a transmitir una trama.
    • En redes inalámbricas, resulta a veces complicado llevar a cabo el primer paso (escuchar al medio para determinar si está libre o no). Por este motivo, surgen dos problemas que pueden ser detectados: 1. Problema del nodo oculto: la estación cree que el medio está libre cuando en realidad no lo está, pues está siendo utilizado por otro nodo al que la estación no "oye". 2. Problema del nodo expuesto: la estación cree que el medio está ocupado, cuando en realidad lo está ocupando otro nodo que no interferiría en su transmisión a otro destino. Para resolver estos problemas, la IEEE 802.11 propone MACA (Multi Access Collision Avoidance – Evitación de Colisión por Acceso Múltiple).
    • Segmentación La segmentación (en inglés pipelining, literalmente tubería o cañería) es un método por el cual se consigue aumentar el rendimiento de algunos sistemas electrónicos digitales. La segmentación consiste en descomponer la ejecución de cada instrucción en varias etapas para poder empezar a procesar una instrucción diferente en cada una de ellas y trabajar con varias a la vez. En el caso del procesador DLX podemos encontrar las siguientes etapas en una instrucción: IF: búsqueda ID: decodificación EX: ejecución de unidad aritmético lógica MEM: memoria WB: escritura Cada una de estas etapas de la instrucción usa en exclusiva un hardware determinado del procesador, de tal forma que la ejecución de cada una de las etapas en principio no interfiere en la ejecución del resto.
    • En el caso de que el procesador no pudiese ejecutar las instrucciones en etapas segmentadas, la ejecución de la siguiente instrucción sólo se podría llevar a cabo tras la finalización de la primera. En cambio en un procesador segmentado, salvo excepciones de dependencias de datos o uso de unidades funcionales, la siguiente instrucción podría iniciar su ejecución tras acabar la primera etapa de la instrucción actual. Otro ejemplo de lo anterior, en el caso del PIC, consiste en que el procesador realice al mismo tiempo la ejecución de una instrucción y la búsqueda del código de la siguiente.
    • Los switches son dispositivos de enlace de datos que, al igual que los puentes, permiten que múltiples segmentos físicos de LAN se interconecten para formar una sola red de mayor tamaño. De forma similar a los puentes, los switches envían e inundan el tráfico con base a las direcciones MAC. Dado que la conmutación se ejecuta en el hardware en lugar del software, es significativamente más veloz. Se puede pensar en cada puerto de switch como un micropuente; este proceso se denomina microsegmentación. De este modo, cada puerto de switch funciona como un puente individual y otorga el ancho de banda total del medio a cada host. Los switches de LAN se consideran puentes multipuerto sin dominio de colisión debido a la microsegmentación. Los datos se intercambian, a altas velocidades, haciendo la conmutación de paquetes hacia su destino. Al leer la información de Capa 2 de dirección MAC destino, los switches pueden realizar transferencias de datos a altas velocidades, de forma similar a los puentes. El paquete se envía al puerto de la estación receptora antes de que la totalidad del paquete ingrese al switch. Esto provoca niveles de latencia bajos y una alta tasa de velocidad para el envío de paquetes. Segmentación mediante Switches.
    • Hay dos motivos fundamentales para dividir una LAN en segmentos. El primer motivo es aislar el tráfico entre segmentos, y obtener un ancho de banda mayor por usuario, al crear dominios de colisión más pequeños. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y colisiones y virtualmente no ofrecerían ningún ancho de banda. Al dividir redes de gran tamaño en unidades autónomas, los puentes y los switches ofrecen varias ventajas. Un puente, o switch, reduce el tráfico que experimentan los dispositivos en todos los segmentos conectados ya que sólo se envía un determinado porcentaje de tráfico. Los puentes y los switches amplían la longitud efectiva de una LAN, permitiendo la conexión de estaciones distantes que anteriormente no estaban permitidas. Aunque los puentes y los switches comparten los atributos más importantes, todavía existen varias diferencias entre ellos. Los switches son significativamente más veloces porque realizan la conmutación por hardware, mientras que los puentes lo hacen por software y pueden interconectar las LAN de distintos anchos de banda. Una LAN Ethernet de 10 Mbps y una LAN Ethernet de 100 Mbps se pueden conectar mediante un switch. Estos pueden soportar densidades de puerto más altas que los puentes.
    • Segmentación mediante Routers . Los routers son más avanzados que los puentes. Un puente es pasivo (transparente) en la capa de red y funciona en la capa de enlace de datos. Un router funciona en la capa de red y basa todas sus decisiones de envío en la dirección de protocolo de Capa 3. El router logra esto examinando la dirección destino del paquete de datos y buscando las instrucciones de envío en la tabla de enrutamiento (ya lo veremos mas adelante). Los routers producen el nivel más alto de segmentación debido a su capacidad para determinar exactamente dónde se debe enviar el paquete de datos. Como los routers ejecutan más funciones que los puentes, operan con un mayor nivel de latencia. Los routers deben examinar los paquetes para determinar la mejor ruta para enviarlos a sus destinos. Inevitablemente, este proceso lleva tiempo e introduce latencia (retardo).
      • Ethernet conmutada
      • Es la tecnología LAN (Local Área Network) más implantada en empresas, universidades, etc.
      • Los hosts se conectan mediante enlaces punto a punto a un conmutador de tramas Ethernet, formándose típicamente estructuras en árbol.
      • Utiliza enlaces de par trenzado (distancias cortas) o fibra óptica (distancias largas).
      • Las tasas de transmisión típicas son 100 Mbps y 1 Gbps entre cada par de nodos.
      • No existen colisiones. El conmutador las resuelve.
    • CONCLUSION Existen demasiados tipos de conexion entre las computadoras, se debe saber cuales son los pros y contras de las conexiones para asi elegir la que mas le convenga al usuario