• Save
Light Sources - Paul Scherrer Institute
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Light Sources - Paul Scherrer Institute

on

  • 2,286 views

Luc Patthey, leader of the research group of Spectroscopy on Novel Materials at the Synchrotron Radiation and Nanotechnology Laboratory at PSI, presents the Swiss Light Source and the future X-ray ...

Luc Patthey, leader of the research group of Spectroscopy on Novel Materials at the Synchrotron Radiation and Nanotechnology Laboratory at PSI, presents the Swiss Light Source and the future X-ray free electron laser, SwissFEL.

Statistics

Views

Total Views
2,286
Views on SlideShare
2,065
Embed Views
221

Actions

Likes
0
Downloads
0
Comments
0

3 Embeds 221

http://swissnexsanfrancisco.org 169
http://www.swissnexsanfrancisco.org 50
http://swiss-sf.cainkade.net 2

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Light Sources - Paul Scherrer Institute Presentation Transcript

  • 1. Research at Paul Scherrer Institute's Large Scale Facilities  L. Patthey June 22, 2010 San Francisco SWISSNEX L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 2. Paul Scherrer Institute L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 3. Paul Scherrer (1890 – 1969) –  Studied physics and mathematics at the Swiss Federal Institute of Technology (ETH) Zurich, in Königsberg and Göttingen in Germany –  1920: Director of The Institute of Physics at the ETH Zurich. Became well-known for the clarity of his lectures –  Researched X-ray scattering on crystals, liquids and gases. Later research work was in nuclear physics –  1946: President of the Swiss Study Commission on Atomic Energy –  Involved in the founding of CERN L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 4. Political embedding Swiss Federal Government  EDA  EDI  EJPD  VBS  EFD  EVD  UVEK  Board of the Swiss Federal Institutes of Technology ETHZ EPFL PSI Empa WSL Eawag Swiss Federal Swiss Federal Paul Scherrer Swiss Federal Swiss Federal Swiss Federal Institute of Institute of Institute  Laboratories Research Institute for Technology Technology for Materials Institute for Water Resour- Zurich  Lausanne  Testing  Forestry, Snow ces and Water and Landscape  Pollution Control  Universities  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 5. Research at PSI Health Energy Proton and therapy Environment Micro- Large and scale Nano- facilities technology L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 6. Our Mission –  To play a leading role at an interna/onal level in  – physics of condensed ma0er and materials sciences  – structural biology   – radiochemistry, radiopharmacy and proton radia8on therapy  – par8cle physics and accelerator developments  by using large‐scale facili/es   (SLS, SINQ, SµS, par8cle beams)  –  To be a UserLab for external science community  –  Energy research, primarily using complex facili/es, towards an efficient,  environmentally friendly and reliable energy supply  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 7. Personalentwicklung in den Forschungsschwerpunkten Development of PSI research activities des PSI (ohne Drittmittelstellen) 1200 1000 Nuclear Energy Personenjahre pro Jahr Employees/year Particle Physics 800 Biology 600 General Energy SLS SLS (Light source) 400 Materials Research 200 SINQ SINQ (Neutrons) 0 Year Budgetjahr L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 8. Swiss Light Source 3rd+ Generation storage ring • 400 mA, Top-up injection • In operation since 2001 • 17 beamlines • 1053 experiments in 2009 (PSI: 1734) • 3145 users in 2009 (PSI: 4526) Main activities • Physics of condensed matter • Materials sciences • Structural biology • Micro- and Nano- Technology • Energy and Environment L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 9. Synchrotron Analogy Phone: SLS: Wave length ~ 10 cm ~ 0.000’000’01 cm Power ~ 2 Watt ~ 200’000 W 99,999’997 % Speed of light -> directional radiation Acceleration of charge -> Electromagnetic wave (light) L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 10. X-ray and light sources X-Ray Source Milestones 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation (GE) 1961 1st generation synchrotron (NBS) - parasitic 1981 2nd gen. (Daresbury) - dedicated to SR 1984 3rd gen. (Grenoble) - undulators 2001 3rd+ gen. (SLS, Villigen) - high-brightness 2009 4th gen. (Stanford) - X-ray Free Electron Laser Bending magnet L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 11. Synchrotron Radiation Crab Nebula L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 12. Micro-bunching and coherent emission λ  Micro‐bunches radiate coherently.  E = NE1 Ini8ally uniform e‐ distribu8on (blue)  Pincoh = NP1 evolves into microbunches (red).  Pcoh = N 2 E12 = NPincoh N ≈ 10 9 !! XFEL undulator  € € „Self‐amplifying spontaneous emission“ (SASE)  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 13. X-Ray Source Brilliance 1024 XFEL 1021 rd 3 Generation Average Brilliance 1018 Synchrotrons nd 2 Generation 15 10 1012 st 1 Generation 109 X-ray tubes 106 1910 1930 1950 1970 1990 2010 Calendar Year brilliance = # photons / time / area / solid-angle / energy-bandwidth L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 14. Time resolved (Motion and shutter speed) L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 15. How fast can we go? 1/8’000 0.000’000’000’000’01 sec 10 Billion time faster 10-4 sec 10-14 sec 1/10 msec 10 Femto sec. L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 16. Space and Time Space mm µm nm ns ps fs Time L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 17. Light as probe Resolution: Space→ λ Time→ τ λ cτ L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 18. Light sources Optical Laser „Fast“ : τ = 2 fs … (0.4 fs) „ Low res. “ : λ = 200 nm…(14 nm) Synchrotron light „ High res.“ : λ = 0.1 nm „Slow“ : τ = 100.000 fs XFEL: High res. and Fast λ = 0.1 nm, τ = 10 fs L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 19. The SwissFEL •  hν:Mg L-edge (50 eV) - 57Fe Mössbauer resonance (14.4 keV) •  Soft X-rays: circular polarization, transform-limited (seeding) •  Hard X-rays: 5-20 fs (low-charge mode) •  Synchronized THz pump source •  100 Hz repetition rate ⇒ condensed matter applications L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 20. SwissFEL Tunnel & Building •  Accelerator, beamlines and experiment underground •  Linac HF and other facilities above ground L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 21. SwissFEL: Villigen or Würenlingen 10.11.2009  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 22. SwissFEL Milestones Gun laser  0.25 GeV  2010 Commissioning 250 MeV Injector Ende 2014 Realisation main building Gun laser  2.1 GeV  3.4 GeV  5.8 GeV  ARAMIS FEL 1-7 Å Exp2  Beginning 2016, SwissFEL Phase I Laser pump  Commissioning Linear Accelerator und ARAMIS FEL Gun laser  2.1 GeV  3.4 GeV  5.8 GeV  ARAMIS FEL 1-7 Å Exp2  2018, SwissFEL Phase II ATHOS FEL 7‐70 Å  Commissioning ATHOS FEL Seed laser  Exp2  Laser pump  THz pump  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 23. SwissFEL: Cost Target: Installation cost Expected cost distribu/on  without manpower: 275.5 MCHF + pre-investment ≈ 20 MCHF without the XFEL preparation phase (250 MeV Injector) -> = 38 CHF (34 USD) / Citizen L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 24. Our Sisters... 1 km Europe EU-XFEL–DESY 2014 Japan SCSS–SPring8 2011 USA LCLS-SLAC 2009 L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 25. Scientific Challenges L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 26. Correlated electrons weak and strong interacting electron systems L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 27. Modern electronic properties of condense mater Colossal magnetoresistance effect (CMR) High temperature Superconductivity Large drop of resistivity upon relatively small magnetic No resistivity at liquid nitrogen temperature fields Electron energy Emission angle L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 28. Averaging in time (slow shutter speed) L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 29. Time resolved (fast shutter speed) Dynamics in correlated electron: new aspect and new physics! L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 30. Lattice, Charge, Spin and Orbital orders Lattice Charge Orbital Spin L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 31. Resonant X-ray Scattering Resonant X-ray (emission): Scattering (diffraction): Chemical information Structural information Photon Photon In Out Back scattering angle L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 32. Time-resolved Resonant X-ray Scattering Pump and Probe Optical pulse from Laser X-ray from X-FEL ΔT Optical Pump Pulse X-ray Probe Pulse L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 33. Time-resolved Resonant X-ray Scattering Goal:  •  Pump: Melt charge/spin order with  op8cally phase transi8on    •  Probe: Study the dynamics which  govern charge reorganiza8on  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 34. • May 2010 Tested at ALS • June 2010 Installation at SLAC • July 2010 1st experiment with LCLS (X-FEL) W.-S. Lee, Z.X. Shen (SIMES, Stanford), Y.D. Chuang, Z. Hussain (LBL, ALS) L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 35. Fast 2-D CCD detector •  Developed by LBNL. •  200 frames per sec. ->Pulse-by- pluse data collection. •  480 by 480 array of 30 mm square pixels •  8o acceptance, 0.017o per pixel •  Successfully tested at the ALS (May 2010) L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 36. end‐sta8on at SLS, PSI   Em  hv`   hv  ΔE E f  Ei  Energy transfer:  Momentum transfer:  ΔE = hv – hv`  q = kin ‐ kout  RIXS Spectrometer:  L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 37. Conclusion Learn from experience accumulated at LCLS trough collaboration and joint projects -New physics Resonant X‐ray Sca0ering end‐sta8on for LCSL (ALS, Stanford)  -Problems and difficulties -Share expertise Resonant Inelas8c X‐ray Sca0ering end‐sta8on at SLS, PSI   L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco
  • 38. Acknowledgment Stanford National Accelerator Laboratory (SLAC), LCLS W. Schlotter, All LCLS team Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL) Y.-D. Chuang, K. Chow, Z. Hussain Lawrence Berkeley National Laboratory (LBNL) R. Schoenlein and R. Kaindl Lawrence Berkeley National Laboratory (LBNL) P. Denas, D. Doering, N. Andresen Stanford Institute for Materials and Energy Science (SIMES) Stanford University and National Accelerator Laboratory (SLAC) W.‐S. Lee, Z. X. Shen, T. P. Devereaux University of Illinois P. Abbamonte Swiss Light Source (SLS), Paul Scherrer Institut (PSI) S. L. Johnson, U. Staub, R. De Souza, P. Beaud, G. Ingold Spectroscopy group, Swiss Light Source (SLS), Paul Scherrer Institut (PSI) T. Schmitt, K. Zhou, V. Strocov SwissFEL, Paul Scherrer Institut (PSI) B. Patterson, R. Abela L. Patthey, June 22, 2010, San Francisco, swissnex San Francisco