GROWDERS & PLATOS, session 1 Optimal use of storage systems Petra de Boer Project coordinator GROWDERS Roger Cremers Devel...
Introduction Workshop Leaders Energy storage Electric vehicles Smart Grids Petra de Boer Energy systems Grid integration O...
Agenda <ul><li>14 February 2011, 16:00 – 17:30 </li></ul><ul><ul><li>Introduction of GROWDERS project </li></ul></ul><ul><...
Introduction of GROWDERS <ul><li>EC funded under 6 th  Framework Programme </li></ul><ul><li>Coordinated by KEMA </li></ul...
GROW-DERS <ul><li>For more information regarding the project: </li></ul><ul><li>http:// www.growders.eu </li></ul><ul><li>...
Electricity Networks of the Future <ul><li>Renewable Energy </li></ul><ul><li>Energy Trading </li></ul><ul><li>Voltage con...
Applications of Electricity Storage T&D: Asset management Voltage control Power quality Grid stability Trading/Generation:...
Where is Storage Targeting? <ul><li>Integration of Renewables into Grid  </li></ul><ul><ul><li>Can help maintain grid oper...
<ul><li>Batteries   </li></ul><ul><ul><ul><li>NiCd and NiMH </li></ul></ul></ul><ul><ul><ul><li>Lithium-ion </li></ul></ul...
Main activities in GROWDERS Design Optimization Tool Design Storage System  Build Prototypes Field tests x 3 Combined  Pil...
Field tests of GROWDERS <ul><li>Zutphen, The Netherlands </li></ul><ul><li>Zamudio, Spain </li></ul><ul><li>Chambery, Fran...
Test site Bronsbergen (Zutphen)
Test site Bronsbergen (Zutphen)
Holiday parc Bronsbergen in Zutphen <ul><li>200 homes </li></ul><ul><li>~300 kW solar panels </li></ul>
Flywheel system
Results Zutphen <ul><li>Flywheel system passed all tests </li></ul><ul><li>All initial problems were solved (like communic...
Battery test site Zamudio and Chambery
Transportable storage systems
Results Chambery and Zamudio <ul><li>System is transportable </li></ul><ul><li>All initial problems were solved (like comm...
Final field test Mannheim <ul><li>3 storage systems at one location (2 Li-ion batteries and 1 flywheel) </li></ul><ul><li>...
Lessons learned GROWDERS <ul><li>Transportation of storage systems is possible, but not always easy to realize (heavy, str...
The need of storage in the grid <ul><li>GROWDERS demonstrated that Transportable (containerized) storage can be used on LV...
Questions <ul><ul><li>Questions that need to be answered: </li></ul></ul><ul><ul><li>What type and size of storage is requ...
Planning tool for optimizing storage  (PLATOS) <ul><li>Tool that assist network planners to optimize the location, size an...
Complexity of Decision Making <ul><li>Optimizing the use of storage </li></ul><ul><li>Decision methodology introduction fo...
Setting expectations <ul><li>Learning goals: </li></ul><ul><ul><li>Getting insight in overview of decisions about storage ...
Distribution system planning in general Scenario 1 Scenario 2 Scenario n Decision  process  (Sub)Scenarios Optimal solutio...
Changing balance of objectives (Risk  management ) Avoid Control Intuition Well funded (Net present value,  Life cycle cos...
Uncertainties in distribution system planning <ul><li>Demand </li></ul><ul><ul><li>Growth, size and location of energy dem...
RESIDENTIAL DEMAND ELECTRICAL APPLIANCES ENERGY EFFICIENCY CUSTOMER BEHAVIOURS METERS & DISPLAYS SUPPLIER TRANSACTIONS DIS...
Decision making process New development Generate alternative solutions Technical evaluation per alternative solution (chec...
What are the aspects of a good decision?  <ul><li>Objective </li></ul><ul><li>Transferable </li></ul><ul><ul><li>Consisten...
Important to distinguish  I <ul><li>Scenario </li></ul><ul><li>External </li></ul><ul><li>Uncertainty </li></ul><ul><li>It...
Important to distinguish  II <ul><li>Constraints </li></ul><ul><li>Requirements </li></ul><ul><li>You have to meet the req...
Important to distinguish  III <ul><li>Planning </li></ul><ul><li>Short, medium, long term </li></ul><ul><li>Revisable plan...
Problem definition <ul><li>A well described problem definition contains: </li></ul><ul><ul><li>Uncertainties </li></ul></u...
Problem definition in GROWDERS (1/2) <ul><li>Given the grid and (expected) problems and fluctuating demand and generation,...
Problem definition in GROWDERS (2/2) <ul><li>Solve grid problems </li></ul><ul><ul><li>Under/over-voltages </li></ul></ul>...
Generating alternatives (general) <ul><li>Alternative = possibility to solve the problem </li></ul><ul><li>Brainstorm:  </...
Storage alternatives within GROWDERS <ul><li>Use of Storage </li></ul><ul><ul><li>Number </li></ul></ul><ul><ul><li>Type(s...
Added complexity through storage  (1/2) <ul><li>Storage is both demand  and  generation </li></ul><ul><li>Pattern not give...
Added complexity through storage (2/2) <ul><li>Storage adds many new decisions </li></ul><ul><li>When choosing 3 locations...
Other alternatives within GROWDERS “conventional” solutions <ul><li>Operational </li></ul><ul><ul><li>Change ratings, sett...
Decision making process New development Generate alternative solutions Technical evaluation per alternative solution (chec...
Typical constraints DSO <ul><li>Comply with regulation  </li></ul><ul><li>Grid Code (Legislation) </li></ul><ul><li>(inter...
Constraints within GROWDERS <ul><li>Usual loadflow and short circuit checks </li></ul><ul><li>Time patterns through “sweep...
Different objectives  <ul><li>Objectives DSO </li></ul><ul><li>Performance Indicators </li></ul><ul><li>For example </li><...
Objectives within GROWDERS <ul><li>Net Present Value of all costs </li></ul><ul><li>Trading: Maximized within grid limits ...
Summary decision making process New development Generate alternative solutions Technical evaluation per alternative soluti...
Additional options for decision making <ul><li>Time dependent alternative solutions (strategies) </li></ul><ul><li>Sensiti...
Summary <ul><li>Adding storage to the conventional decision process for in distribution planning process means added compl...
Conclusions Decision making about storage <ul><li>Follow a complete and integrated approach </li></ul><ul><ul><li>Define p...
What’s next ?
Next session <ul><ul><li>Tuesday 17th of February 2011, 16:00 – 17:30 </li></ul></ul><ul><ul><li>Main features of PLATOS  ...
Example of PLATOS
Thank you for your attention www.growders.eu Petra de Boer  Roger Cremers  Gabriël Bloemhof +31 26 356 2552  + 31 26 356 3...
Upcoming SlideShare
Loading in...5
×

Grid Connected Electricity Storage Systems (1/2)

2,999

Published on

Development and use of Renewable Energy Sources is one of the key elements in European Electricity Research. However, connecting energy sources such as photovoltaics and wind turbines to the electricity grid causes significant effects on these networks. Bottlenecks are stability, security, peaks in supply & demand and overall management of the grid. Energy storage systems provide means to overcome technical and economic hurdles for large-scale introduction of distributed sustainable energy sources. The GROW-DERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates the implementation of (transportable) distributed storage systems in the networks. The project is funded by the European Commission (FP6) and the consortium partners are KEMA, Liander, Iberdrola, MVV, EAC, SAFT, EXENDIS, CEA-INES and IPE.

In this project 3 storage systems (2 Li-ion battery systems and a flywheel) have been demonstrated at different test locations in Europe. Additionally, a dedicated software tool, PLATOS (PLAnning Tool for Optimizing Storage), has been developed by KEMA to optimize the energy management of electricity networks using storage. For each network, the location, size and type of storage systems is evaluated for all possible configurations and the most attractive option is selected.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,999
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
219
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • GROWDERS partners KEMA, Netherlands - project coordinator SAFT, France CEA, France Exendis, Netherlands IPE, Poland Liander, Netherlands Electricity Authority of Cyprus, Cyprus MVV, Germany IBERDROLA, Spain
  • Storage appears to have an application in all areas of the grid – current &amp; future.
  • GROWDERS partners KEMA, Netherlands - project coordinator SAFT, France CEA, France Exendis, Netherlands IPE, Poland Liander, Netherlands Electricity Authority of Cyprus, Cyprus MVV, Germany IBERDROLA, Spain
  • Grid Connected Electricity Storage Systems (1/2)

    1. 1. GROWDERS & PLATOS, session 1 Optimal use of storage systems Petra de Boer Project coordinator GROWDERS Roger Cremers Developer PLATOS tool Gabriël Bloemhof Consultant decision making models 14 February 2011 16:00 – 17:30 17 February 2011 16:00 – 17:30
    2. 2. Introduction Workshop Leaders Energy storage Electric vehicles Smart Grids Petra de Boer Energy systems Grid integration Optimization Power Factory Developer PLATOS Roger Cremers Gabriël Bloemhof
    3. 3. Agenda <ul><li>14 February 2011, 16:00 – 17:30 </li></ul><ul><ul><li>Introduction of GROWDERS project </li></ul></ul><ul><ul><li>Benefits of grid connected storage </li></ul></ul><ul><ul><li>4 field tests in Europe using storage </li></ul></ul><ul><ul><li>Decision making model in PLATOS </li></ul></ul><ul><li>17 February 2011, 16:00 – 17:30 </li></ul><ul><ul><li>Main features of PLATOS </li></ul></ul><ul><ul><li>Demonstration with the PLATOS tool </li></ul></ul><ul><ul><li>Examples, results </li></ul></ul>
    4. 4. Introduction of GROWDERS <ul><li>EC funded under 6 th Framework Programme </li></ul><ul><li>Coordinated by KEMA </li></ul><ul><li>Goal: To demonstrate the technical and economical possibilities of existing electricity storage technologies. </li></ul><ul><ul><li>Realization of Transportable Flexible storage systems </li></ul></ul><ul><ul><li>Realization of an Assessment tool for optimal distribution network management </li></ul></ul><ul><ul><li>Description of conceptual directions for EU regulatory framework </li></ul></ul>Grid Reliability and Operability with Distributed Generation using Transportable Storage
    5. 5. GROW-DERS <ul><li>For more information regarding the project: </li></ul><ul><li>http:// www.growders.eu </li></ul><ul><li>Workshop with visit to the field test in Mannheim: 11 May 2011 </li></ul>
    6. 6. Electricity Networks of the Future <ul><li>Renewable Energy </li></ul><ul><li>Energy Trading </li></ul><ul><li>Voltage control </li></ul><ul><li>Better power quality </li></ul><ul><li>Energy Balancing </li></ul><ul><li>Frequency control </li></ul><ul><li>Grid stability </li></ul><ul><li>Peak shaving </li></ul><ul><li>Ride through </li></ul><ul><li>Load shifting </li></ul><ul><li>Invest deferral </li></ul><ul><li>Support (P)EV’s </li></ul>Electricity storage systems will enable the Smart Grid by solving many of the technical challenges
    7. 7. Applications of Electricity Storage T&D: Asset management Voltage control Power quality Grid stability Trading/Generation: Control / load following Energy management Peak generation Load levelling System operators: Frequency control Spinning reserve Balancing End user (industry) : UPS / Ride Through / Shut down Peak shaving optimization of energy purchase by load shifting (Reactive power) Renewable: Decoupling demand and source availability Control and integration
    8. 8. Where is Storage Targeting? <ul><li>Integration of Renewables into Grid </li></ul><ul><ul><li>Can help maintain grid operations </li></ul></ul><ul><ul><li>Consensus being reached on exact level of penetration </li></ul></ul><ul><ul><li>Bulk vs. Utility Scale, Centralized vs. Decentralized? </li></ul></ul><ul><li>Ancillary Services </li></ul><ul><ul><li>Fast response capabilities allow devices to perform better than current devices </li></ul></ul><ul><ul><li>Should ISOs take advantage of fast response capabilities </li></ul></ul><ul><li>(PH)EVs </li></ul><ul><ul><li>Battery in vehicle, when aggregated, can be a Smart Grid Tool </li></ul></ul><ul><ul><li>Focus is currently on fleet applications! </li></ul></ul><ul><li>Community Energy Storage </li></ul><ul><ul><li>Used for Distribution benefits </li></ul></ul><ul><ul><li>Can be linked to EV secondary life applications </li></ul></ul>
    9. 9. <ul><li>Batteries </li></ul><ul><ul><ul><li>NiCd and NiMH </li></ul></ul></ul><ul><ul><ul><li>Lithium-ion </li></ul></ul></ul><ul><ul><ul><li>High temperature batteries </li></ul></ul></ul><ul><ul><ul><ul><li>NaS </li></ul></ul></ul></ul><ul><ul><ul><ul><li>ZEBRA </li></ul></ul></ul></ul><ul><ul><ul><li>(Advanced) Lead-Acid </li></ul></ul></ul><ul><ul><ul><ul><li>Lead-Acid </li></ul></ul></ul></ul><ul><ul><ul><li>Flow batteries </li></ul></ul></ul><ul><ul><ul><ul><li>Vanadium Redox </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Zinc Bromine </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Zinc Flow </li></ul></ul></ul></ul><ul><li>Flywheels </li></ul><ul><li>Compressed Air Energy Storages (CAES) </li></ul><ul><li>Pumped Hydro </li></ul><ul><li>Super Capacitors </li></ul><ul><li>Superconducting Magnetic Energy Storage (SMES) </li></ul>Summary of Technologies covered
    10. 10. Main activities in GROWDERS Design Optimization Tool Design Storage System Build Prototypes Field tests x 3 Combined Pilot Develop Optimization Tool Validation & Optimization Nov 2010 2007 June 2011
    11. 11. Field tests of GROWDERS <ul><li>Zutphen, The Netherlands </li></ul><ul><li>Zamudio, Spain </li></ul><ul><li>Chambery, France </li></ul><ul><li>Mannheim, Germany </li></ul>
    12. 12. Test site Bronsbergen (Zutphen)
    13. 13. Test site Bronsbergen (Zutphen)
    14. 14. Holiday parc Bronsbergen in Zutphen <ul><li>200 homes </li></ul><ul><li>~300 kW solar panels </li></ul>
    15. 15. Flywheel system
    16. 16. Results Zutphen <ul><li>Flywheel system passed all tests </li></ul><ul><li>All initial problems were solved (like communication problems) </li></ul><ul><li>Flywheel and inverter work well </li></ul><ul><li>Harmonic compensation worked perfectly </li></ul><ul><li>Reactive power supply was OK </li></ul><ul><li>Islanding mode worked perfect </li></ul><ul><li>Noisy system </li></ul><ul><li>Power losses of the system </li></ul>
    17. 17. Battery test site Zamudio and Chambery
    18. 18. Transportable storage systems
    19. 19. Results Chambery and Zamudio <ul><li>System is transportable </li></ul><ul><li>All initial problems were solved (like communication problems) </li></ul><ul><li>Battery and inverter worked well together </li></ul><ul><li>Energy management system is developed and tested in Chambery </li></ul><ul><li>Load alleviation is proven in these field tests </li></ul><ul><li>Communication problems caused a delay in these field tests </li></ul><ul><li>Energy management system is a critical component of the system </li></ul>
    20. 20. Final field test Mannheim <ul><li>3 storage systems at one location (2 Li-ion batteries and 1 flywheel) </li></ul><ul><li>A large PV solar power unit is installed at this location </li></ul><ul><li>January 2011 – June 2011 </li></ul>
    21. 21. Lessons learned GROWDERS <ul><li>Transportation of storage systems is possible, but not always easy to realize (heavy, strict regulations) </li></ul><ul><li>Technology is still in the demonstration phase (e.g. the energy management system, communication between the components) </li></ul><ul><li>Financial benefits are for different stakeholders </li></ul><ul><ul><li>this is not organized yet </li></ul></ul><ul><li>Regulations are not clear and differ per country </li></ul><ul><li>Number of locations available for the grid operator is often limited </li></ul>
    22. 22. The need of storage in the grid <ul><li>GROWDERS demonstrated that Transportable (containerized) storage can be used on LV networks when Distributed Energy Resources (DER) are installed: </li></ul><ul><ul><li>To alleviate potential network overloads </li></ul></ul><ul><ul><li>For voltage control to avoid over/undervoltage </li></ul></ul><ul><ul><li>To mitigate voltage dips </li></ul></ul><ul><ul><li>To improve Power Quality (PQ) (Flicker, harmonics etc.) </li></ul></ul>Demand and DG Network Storage
    23. 23. Questions <ul><ul><li>Questions that need to be answered: </li></ul></ul><ul><ul><li>What type and size of storage is required? </li></ul></ul><ul><ul><li>Where on the network should storage be installed? </li></ul></ul><ul><ul><li>When should the storage system be charged / discharged? </li></ul></ul><ul><ul><li>What are the costs and benefits? </li></ul></ul>? ? ? Demand and DG Network Storage
    24. 24. Planning tool for optimizing storage (PLATOS) <ul><li>Tool that assist network planners to optimize the location, size and types of energy storage systems in an electrical power system </li></ul>
    25. 25. Complexity of Decision Making <ul><li>Optimizing the use of storage </li></ul><ul><li>Decision methodology introduction for distribution system planning </li></ul><ul><li>Focus: Application to storage </li></ul><ul><li>Implementation in GROWDERS (PLATOS) </li></ul>
    26. 26. Setting expectations <ul><li>Learning goals: </li></ul><ul><ul><li>Getting insight in overview of decisions about storage applications </li></ul></ul><ul><ul><li>Setting foundation for understanding implementation for GROWDERS </li></ul></ul><ul><li>General description of decision process </li></ul><ul><ul><li>Introduction to decision process only </li></ul></ul><ul><ul><li>Pitfall: not everything can be explained </li></ul></ul><ul><li>Focus on implementation of principles and choices made for GROWDERS (PLATOS) </li></ul>
    27. 27. Distribution system planning in general Scenario 1 Scenario 2 Scenario n Decision process (Sub)Scenarios Optimal solutions Optimal distribution network Bottlenecks
    28. 28. Changing balance of objectives (Risk management ) Avoid Control Intuition Well funded (Net present value, Life cycle costing) Certainty Customer oriented (Cost-benefit analysis) COST PERFORMANCE RISK
    29. 29. Uncertainties in distribution system planning <ul><li>Demand </li></ul><ul><ul><li>Growth, size and location of energy demand </li></ul></ul><ul><li>Production </li></ul><ul><ul><li>Decentralized generation, type, location, size </li></ul></ul><ul><ul><li>Sustainable generation patterns (wind & sun) </li></ul></ul><ul><li>Other relevant factors </li></ul><ul><ul><li>Legislation, regulatory processes (also European) </li></ul></ul><ul><ul><li>Grid infrastructure: number, timing, place of failures </li></ul></ul><ul><ul><li>Technological developments </li></ul></ul><ul><ul><li>Incidents or chaos </li></ul></ul><ul><ul><li>Environment </li></ul></ul><ul><ul><li>Tariffs </li></ul></ul>
    30. 30. RESIDENTIAL DEMAND ELECTRICAL APPLIANCES ENERGY EFFICIENCY CUSTOMER BEHAVIOURS METERS & DISPLAYS SUPPLIER TRANSACTIONS DISTRIBUTION NETWORK TRANSMISSION NETWORK MICRO- GENERATION DISTRIBUTED GENERATION CENTRALISED GENERATION INTER CONNECTIONS Elements influencing demand ELECTRIC VEHICLES CENTRALISED STORAGE smart metering smart grids
    31. 31. Decision making process New development Generate alternative solutions Technical evaluation per alternative solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    32. 32. What are the aspects of a good decision? <ul><li>Objective </li></ul><ul><li>Transferable </li></ul><ul><ul><li>Consistent terminology </li></ul></ul><ul><ul><li>Separation between preparator and decision maker </li></ul></ul><ul><li>Transparent / verifiable </li></ul><ul><ul><li>Internally, to regulator, to public </li></ul></ul><ul><li>Well founded </li></ul><ul><ul><li>no unconscious decision making </li></ul></ul>New development Generate alternative solutions Technical evaluation per solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    33. 33. Important to distinguish I <ul><li>Scenario </li></ul><ul><li>External </li></ul><ul><li>Uncertainty </li></ul><ul><li>It could happen to you </li></ul><ul><li>Possible problems </li></ul><ul><li>Not directly influenced </li></ul><ul><li>Alternative </li></ul><ul><li>Internal </li></ul><ul><li>Certainty </li></ul><ul><li>Possible solution or action </li></ul><ul><li>Sought solution </li></ul><ul><li>You choose </li></ul>New development Generate alternative solutions Technical evaluation per solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    34. 34. Important to distinguish II <ul><li>Constraints </li></ul><ul><li>Requirements </li></ul><ul><li>You have to meet the requirements </li></ul><ul><li>Crossing the threshold gives consequences </li></ul><ul><li>Good is good enough </li></ul><ul><li>Objectives </li></ul><ul><li>Business values </li></ul><ul><li>Desired direction </li></ul><ul><li>This is the direction you (i.e. your company) prefer(s) </li></ul><ul><li>More (less) is better </li></ul>New development Generate alternative solutions Technical evaluation per solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    35. 35. Important to distinguish III <ul><li>Planning </li></ul><ul><li>Short, medium, long term </li></ul><ul><li>Revisable plans </li></ul><ul><li>Decisions about assets </li></ul><ul><li>Normal configuration </li></ul><ul><li>Nominal or maximum values given </li></ul><ul><li>Assumptions about Operation </li></ul><ul><li>Operation </li></ul><ul><li>Immediate to short time </li></ul><ul><li>Direct effects </li></ul><ul><li>Assets are given </li></ul><ul><li>Configuration may change </li></ul><ul><li>Actual parameters can be set </li></ul><ul><li>Operational values are known, alterations in procedures are possible </li></ul>Projects Strategy Planning Operations
    36. 36. Problem definition <ul><li>A well described problem definition contains: </li></ul><ul><ul><li>Uncertainties </li></ul></ul><ul><ul><li>Decision variables </li></ul></ul><ul><ul><li>Objectives </li></ul></ul><ul><ul><li>Constraints </li></ul></ul><ul><ul><li>Space </li></ul></ul><ul><ul><li>Time </li></ul></ul><ul><li>General problem definition: </li></ul><ul><li>What should I do (choice of decision variables) to obtain the objective(s) and satisfy the constraints, given the uncertainty, time and space? </li></ul>Set borders Time Complexity New development Generate alternative solutions Technical evaluation per solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    37. 37. Problem definition in GROWDERS (1/2) <ul><li>Given the grid and (expected) problems and fluctuating demand and generation, </li></ul><ul><li>Optimize the use of storage in a distribution grid </li></ul><ul><ul><li>Decide about number, location, type, size </li></ul></ul><ul><ul><li>Maintaining all grid constraints </li></ul></ul><ul><ul><li>Calculate (optimal) total costs / benefits </li></ul></ul><ul><li>Post processing: </li></ul><ul><ul><li>Compare result with conventional solutions </li></ul></ul><ul><ul><li>Decide about (economic) duration of (optimal) storage solution </li></ul></ul>
    38. 38. Problem definition in GROWDERS (2/2) <ul><li>Solve grid problems </li></ul><ul><ul><li>Under/over-voltages </li></ul></ul><ul><ul><li>Overloaded components </li></ul></ul><ul><ul><li>Mitigation of voltage dips </li></ul></ul><ul><li>Postpone investment </li></ul><ul><ul><li>Reduce uncertainty </li></ul></ul><ul><li>Trading </li></ul><ul><ul><li>Subject to grid constraints </li></ul></ul><ul><li>Generic: long(er) term planning process with operational (short term) constraints </li></ul>
    39. 39. Generating alternatives (general) <ul><li>Alternative = possibility to solve the problem </li></ul><ul><li>Brainstorm: </li></ul><ul><ul><li>Any potential idea is (initially) OK </li></ul></ul><ul><ul><li>Selection will be done later </li></ul></ul><ul><li>Set up a not too small number of alternatives </li></ul><ul><ul><li>When there is less creativity in alternatives this can lead to no solution or the lack of the optimal solution </li></ul></ul><ul><li>Choose the best version per set of alternatives </li></ul><ul><li>If needed, use phases </li></ul>“ DO NOTHING” is also an Alternative to be considered!
    40. 40. Storage alternatives within GROWDERS <ul><li>Use of Storage </li></ul><ul><ul><li>Number </li></ul></ul><ul><ul><li>Type(s) </li></ul></ul><ul><ul><li>Size(s) </li></ul></ul><ul><ul><li>Location(s) </li></ul></ul><ul><li>Combination of multiple storage systems </li></ul><ul><li>All simultaneously </li></ul><ul><li>Number of potential solutions is combinatorial </li></ul><ul><li>Future: </li></ul><ul><ul><li>Use of electric cars (V2G Vehicle to Grid) </li></ul></ul><ul><ul><li>Mobile storage (short term mobility) </li></ul></ul>
    41. 41. Added complexity through storage (1/2) <ul><li>Storage is both demand and generation </li></ul><ul><li>Pattern not given or estimated but (second stage) result of controls after “normal” demand & generation </li></ul><ul><li>Has both operational & planning characteristics </li></ul><ul><ul><li>And others, like economics, space </li></ul></ul><ul><li>Possible conflicting interests (different stakeholders) </li></ul><ul><ul><li>E.g. peak-shaving for grid operator, peak enhancing due to trading company. Solved in GROWDERS by maximizing profit by trade, while keeping minimal grid constraints </li></ul></ul>
    42. 42. Added complexity through storage (2/2) <ul><li>Storage adds many new decisions </li></ul><ul><li>When choosing 3 locations (begin/middle/end) in 4 feeders for small or larger storage (single type), this leads to theoretically 412 = 16.777.216 combinations </li></ul><ul><li>More realistic: 80 homes, available storage in 2 types, each 3 sizes: theoretically 680≈2*1062 options </li></ul><ul><li>When storage operations have to be optimized along the pattern, each trial solution requires a loadflow sweep for e.g. 8760 hours per year </li></ul><ul><ul><li>loadflow means matrix inversion </li></ul></ul><ul><li>Thus analytically impossible to solve </li></ul>
    43. 43. Other alternatives within GROWDERS “conventional” solutions <ul><li>Operational </li></ul><ul><ul><li>Change ratings, setting or use dynamic monitoring </li></ul></ul><ul><ul><li>Demand side (& generation) management </li></ul></ul><ul><ul><li>Load or generation curtailment (fined) </li></ul></ul><ul><li>Planning (investments) </li></ul><ul><ul><li>Add cables, lines </li></ul></ul><ul><ul><li>Add transformer capacity </li></ul></ul><ul><li>Reconfigure system (not within PLATOS ) </li></ul><ul><li>In GROWDERS ( PLATOS ) results are compared, not simultaneously optimized </li></ul>
    44. 44. Decision making process New development Generate alternative solutions Technical evaluation per alternative solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    45. 45. Typical constraints DSO <ul><li>Comply with regulation </li></ul><ul><li>Grid Code (Legislation) </li></ul><ul><li>(internal) Guidelines </li></ul><ul><li>Safety </li></ul><ul><li>Reliability </li></ul><ul><li>Thermal rated capacity </li></ul><ul><li>Short-circuit capacity </li></ul><ul><li>Power Quality standards </li></ul><ul><li>Environmental rules </li></ul><ul><li>Financial budget </li></ul>
    46. 46. Constraints within GROWDERS <ul><li>Usual loadflow and short circuit checks </li></ul><ul><li>Time patterns through “sweep” function </li></ul><ul><li>Uncertainty modeled through prediction error: Neural Network used to determine prediction error of demand </li></ul>Prediction error Demand <ul><li>Historical data from Bronsbergen (NL) used. Neural Network predicts on basis of: </li></ul><ul><li>Time of the day </li></ul><ul><li>Day of week </li></ul><ul><li>Which month </li></ul><ul><li>Public holidays </li></ul><ul><li>Meteorological data (temperature, cloudiness) </li></ul>
    47. 47. Different objectives <ul><li>Objectives DSO </li></ul><ul><li>Performance Indicators </li></ul><ul><li>For example </li></ul><ul><ul><li>Economical (costs, profits) </li></ul></ul><ul><ul><ul><li>CAPEX + OPEX </li></ul></ul></ul><ul><ul><li>Reliability </li></ul></ul><ul><ul><li>Social environment </li></ul></ul><ul><ul><li>Risk (financial) </li></ul></ul><ul><ul><li>Image </li></ul></ul>    n t t t i CF NPV 0 ) 1 ( CF = Cashflow i = interest t = time ( year ) n = period     n t t t i CF NPV 0 ) 1 ( CF = Cashflow i = interest t = time ( year ) n = period
    48. 48. Objectives within GROWDERS <ul><li>Net Present Value of all costs </li></ul><ul><li>Trading: Maximized within grid limits </li></ul><ul><li>Performance indicators translated to costs, using prices </li></ul><ul><ul><li>Overloading </li></ul></ul><ul><ul><li>Over/under-voltage </li></ul></ul><ul><ul><li>Voltage dips </li></ul></ul>Storage Solution Generator Alleviation Algorithm: Overloading Alleviation Algorithm: Over/ undervoltage Alleviation Algorithm: Voltage Dips Trading Algorithm Solution Assessment Output data processing Performance Indicator 1 Performance Indicator 2 Performance Indicator 3 Performance Indicator 4 + + + Non-storage Solution Generator Performance Indicator
    49. 49. Summary decision making process New development Generate alternative solutions Technical evaluation per alternative solution (check constraints ) Per alternative solution: Define optimal investment phases Evaluate expected objectives (costs, reliability, image, …) Decide (with uncertainty) Inventory / problem definition Scenarios + probabilities Re-evaluate Physical implementation of first step
    50. 50. Additional options for decision making <ul><li>Time dependent alternative solutions (strategies) </li></ul><ul><li>Sensitivity analysis, what-if, break-even, risk-analysis </li></ul><ul><li>Portfolio decision making </li></ul><ul><li>Stochastic decision making </li></ul>
    51. 51. Summary <ul><li>Adding storage to the conventional decision process for in distribution planning process means added complexity </li></ul><ul><li>Use of dedicated tools is unavoidable </li></ul><ul><li>The structured approach allows consistent, quantitative and transparent decisions </li></ul>
    52. 52. Conclusions Decision making about storage <ul><li>Follow a complete and integrated approach </li></ul><ul><ul><li>Define proper problem scope (size, time) </li></ul></ul><ul><ul><li>Consider temporary storage solutions </li></ul></ul><ul><ul><li>Consider conventional solutions </li></ul></ul><ul><ul><ul><li>incl. “do nothing solution” and delays </li></ul></ul></ul><ul><ul><li>Combine objectives (economics, risk, environment) </li></ul></ul><ul><ul><li>Check all constraints (technical, legal) </li></ul></ul><ul><ul><li>Reflect upon uncertainties </li></ul></ul><ul><ul><ul><li>scenarios and input data </li></ul></ul></ul><ul><ul><li>Make consistent choices </li></ul></ul><ul><li>Use consistent data and tools </li></ul><ul><ul><li>Method is used within PLATOS </li></ul></ul>
    53. 53. What’s next ?
    54. 54. Next session <ul><ul><li>Tuesday 17th of February 2011, 16:00 – 17:30 </li></ul></ul><ul><ul><li>Main features of PLATOS </li></ul></ul><ul><ul><li>Demonstration with the PLATOS tool </li></ul></ul><ul><ul><li>Examples, results </li></ul></ul><ul><ul><li>Wednesday 11th May 2011, Mannheim (GE) </li></ul></ul><ul><ul><li>Workshop including site visit to the storage systems </li></ul></ul>
    55. 55. Example of PLATOS
    56. 56. Thank you for your attention www.growders.eu Petra de Boer Roger Cremers Gabriël Bloemhof +31 26 356 2552 + 31 26 356 3240 + 31 26 356 6150 [email_address] [email_address] [email_address]
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×