Your SlideShare is downloading. ×
0
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Quadraticequation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Quadraticequation

1,366

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,366
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
41
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Quadratic Equations 2.4 To Form Quadratic Equations From Given Roots 2.1 Recognising Quadratic Equations 2.2 The ROOTs of a Quadratic Equation (Q.E) 2.3 To Solve Quadratic Equations 2.5 Relationship between and the roots of Q.E
  • 2. 2.1 Recognising Quadratic Equations Students will be taught to 1. Understand the concept quadratic equations and its roots. Learningt Outcomes Learningt Objectives Students will be able to: 1.1 Recognise quadratic equation and express it in general form
  • 3. QUADRATIC EQUATIONS (ii) Characteristics of a quadratic equation: (a) Involves only ONE variable, (c) The highest power of the variable is 2. (i) The general form of a quadratic equation is ; a, b, c are constants and a ≠ 0. (b) Has an equal sign “ = ” and can be expressed in the form ,
  • 4. 2.1 Recognising Quadratic Equations Exercise Module Q.E page1
  • 5. Students will be taught to 2. Understand the concept of quadratic equations. Learningt Outcomes Learningt Objectives Students will be able to: 2.1 Determine the roots of a quadratic equation by 2.3 To Solve Quadratic Equations ( a ) Factorisation ( b ) completing the square ( c ) using the formula
  • 6. Method 1 By Factorisation This method can only be used if the quadratic expression can be factorised completely. Example: Solve the quadratic equation
  • 7. Example: Method 2 Formula a=2 , b =-8, c=7 x = 2.707 atau 1.293 Solve the quadratic equation by formula.Give your answer correct to 4 significant figures
  • 8. Method 3 By Completing The Square Example 1: Simple Case : When a = 1 - To express in the form of Solve by method of completing square
  • 9. Method 3 By Completing The Square Example 2: [a = 1, but involving fractions when completing the square] x = - 0.5616 x = 3.562 or - To express in the form of Solve by method of completing square
  • 10. Method 3 By Completing Square Example 3: If a ≠ 1 : Divide both sides by a first before you proceed with the process of ‘completing the square’. 2.707 or 1.293 - To express in the form of Solve by method of completing square
  • 11. Exercise Module Q.E page 4 Practice 3. By using formula,solve quadratic equation 2. Solve quadratic equation by method of completing the square <ul><li>Solve quadratic equation by factorisation. </li></ul>
  • 12. Students will be taught to 2. Understand the concept of quadratic equations. Learningt Outcomes Learningt Objectives Students will be able to: 2.2 Form a quadratic equation from given roots. 2.4 To Form Quadratic Equations from Given Roots
  • 13. 2.4 To Form Quadratic Equations from Given Roots If the roots of a quadratic equation are α and β, That is, x = α , x = β ; Then x – α = 0 or x – β = 0 , (x – α) ( x – β ) = 0 The quadratic equation is Sum of roots product of roots Find the quadratic equation with roots 2 dan- 4. x = 2 , x = - 4
  • 14. 2.4 To Form Quadratic Equations from Given Roots Compare Given that the roots of the quadratic equation are -3 and ½ . Find the value of p and q.
  • 15. Practice Exercise Module page 9 L2. Find the quadratic equation with roots 2 dan- 4. L1. Find the quadratic equation with roots -3 dan 5.
  • 16. Find out SOR and POR of Find out SOR and POR of
  • 17. Find SOR and POR Find SOR and POR of
  • 18. Exercise Exercise 2.2.2 (Text book Page 34) 2 (a ) (b) (c ) (d) 3 ( a) (b ) ( c) 5. 10-3-2009 Skill Practice 2 (a ) (b) (c ) (d)
  • 19. Students will be taught to 3. Understand and use the condition for quadratic equations to have Learningt Outcomes Learningt Objectives Students will be able to: ( a ) two different roots ( b ) two equal roots ( c ) no roots 2.5.1 Relationship between and the roots of Q.E 3.1 Determine types of roots of quadratic equation from the value of .
  • 20. Q.E. has two distinct/different /real roots. The Graph y = f(x) cuts the x-axis at TWO distinct points. 2.5 The Quadratic Equation 2.5.1 Relationship between and the roots of Q.E
  • 21.  
  • 22. Q.E. has real and equal roots. The graph y = f(x) touches the x-axis [ The x-axis is the tangent to the curve] 2.5 The Quadratic Equation 2.5.1 Relationship between and the roots of Q.E
  • 23.  
  • 24. Q.E. does not have real roots. Graph y = f(x) does not touch x-axis. Graph is above the x-axis since f(x) is always positive. Graph is below the x-axis since f(x) is always negative. 2.5 The Quadratic Equation 2.5.1 Relationship between and the roots of Q.E
  • 25. ( a) x = -6 and x=3 ( x+6 )( x-3 )=0 Comparing P = 6 q = -36 a = 2 b= 6 c=-36-k does not have real roots. The roots of quadratic equation are -6 and 3 Find (a) p and q, (b) range of values of k such that does not have real roots.
  • 26. Practice Exercise Module page 9 1. Find the range of k if the quadratic equation has real and distinct roots. 2. Find the range of p if the quadratic equation has real roots.

×