5.6 solving exponential and logarithmic equations
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

5.6 solving exponential and logarithmic equations

on

  • 673 views

 

Statistics

Views

Total Views
673
Views on SlideShare
670
Embed Views
3

Actions

Likes
0
Downloads
10
Comments
0

2 Embeds 3

http://moodle.ncvps.org 2
https://st.blackboard.com 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

5.6 solving exponential and logarithmic equations Presentation Transcript

  • 1. Solving Exponential and Logarithmic Equations
  • 2. • By the definition of a function, if u = v and f is a function, then f(u) = f(v) [remember each input of a function has one and only one output!] • So, let’s say we have a function f(x) = b?, then if u = v then bu = bv for all real #s b>0 • Likewise, if we have a function f(x) = logb?, if u = v then logbu = logbv for all real #s b>0 • And because exponential and logarithmic functions are one-to-one (i.e. their inverses are also functions), then the converse is true: – If bu = bv then u = v – If logbu = logbv then u = v
  • 3. Now, let’s use these statements, (and all the other properties for exponents and logarithms), to solve: Exponential and Logarithmic equations
  • 4. Example 1: Powers of the Same Base Solve 8x = 2x+1 Can you create a common base? (23)x = 2x+1 23x = 2x+1 3x = x+1 2x = 1 x = ½ Graph Y=8x and Y=2x+1 to confirm
  • 5. Example 2: Powers of Different Bases Solve 5x = 2 ln5x = ln2 xln5 = ln2 x = ln2/ln5 x = 0.6931/1.6094 x = 0.4307 Graph Y=5x and Y=2 to confirm
  • 6. Example 3: Powers of Different Bases Solve 24x-1 = 31-x ln(24x-1) = ln(31-x) (4x-1)ln2 = (1-x)ln3 4xln2 – ln2 = ln3 – xln3 4xln2 + xln3 = ln3 +ln2 x(4ln2 + ln3) = ln3 +ln2 x = (ln3 + ln2)/(4ln2 + ln3) x = 0.4628 Graph Y=24x-1 and Y= 31-x to confirm
  • 7. Example 4: Using Substitution Solve ex – e-x= 4 Multiply each side by ex to eliminate negative exponents ex(ex – e-x ) = ex(4) exex – exe-x = ex(4) e2x - 1 = 4ex e2x - 4ex - 1 = 0 Let u = ex and substitute u2 -4u -1 = 0
  • 8. Now, let’s do the same thing by solving some real world applications of exponential equations
  • 9. Example 5: Radiocarbon Dating The half life of carbon-14 is 5730 years. The skeleton of a mastodon has lost 58% of its original carbon-14. When did the mastodon die? What is the half-life formula? f(x) = P(0.5)x/h (P is initial amount; h is half-life, x is # years) So, f(x) = P(0.5)x/5730 .42P = P(0.5)x/5730
  • 10. 0.42P = P(0.5)x/5730 0.42 = (0.5)x/5730 ln0.42 = ln(0.5)x/5730 ln0.42 = (x/5730)ln0.5 x = (5730)(ln0.42)/ln0.5 x = 7171.3171 Graph Y=0.42 and Y=(0.5)x/5730 to confirm
  • 11. Example 6: Compound Interest If $3000 is to be invested at 8% per year, compounded quarterly, in how many years will the investment be worth $10,680? What is the compound interest formula? A = P(1+r)t (A is amount after t periods; P is the principal; r is interest rate) So, 10,680 = 3000(1+.08/4)4t 10,680 = 3000(1.02)4t
  • 12. 10,680 = 3000(1.02)4t 3.56 = (1.02)4t ln3.56 = ln(1.02)4t ln3.56 = (4t)ln(1.02) 4t = ln3.56/ln1.02 t = (ln3.56/ln1.02)/4 t = 16.03 years Graph Y=10680 and Y=3000(1.02)t/4 to confirm
  • 13. Example 7: Population Growth The population of a certain type of bacteria grows by the function S(t) = Pert, where P is the initial population and r is a continuous growth rate. If a biologist has a culture that contains 1000 bacteria, and 7 hours later there are 5000 bacteria: a. Write the function for this population b. When will the population reach 1 billion? a. What does the equation look like when evaluated at t = 7, i.e. when S(7) = 5000? 5000 = 1000er(7) 5 = e7r ln5 = lne7r ln5 = 7rlne (lne = 1) ln5 = 7r r = 0.2299 So the function for this population is S(t) = 1000e0.2299t
  • 14. b. When will the population reach 1 billion? b. S(t) = 1000e0.2299t 1000e0.2299t = 1,000,000,000 e0.2299t = 1,000,000 lne0.2299t = ln1,000,000 0.2299t lne = ln1,000,000 (lne =1) t = ln1,000,000/0.2299 t = 60.0936 hours Graph Y=1000e0.2299t and Y=1 billion to confirm
  • 15. Ex 8: Inhibited Population Growth A population of fish in a lake at time t months is given by: F(t)=20,000/(1+24e-t/4) How long will it take for the population to reach 15,000? 15000 = 20000/(1+24e-t/4) 15000(1+24e-t/4) = 20000 1+24e-t/4 = 20000/15000 24e-t/4 = 4/3 - 1 e-t/4 = (1/3)(1/24) lne-t/4 = ln (1/72) (-t/4)lne = ln1 - ln72 -t/4 = 0 – ln72 (lne=1, ln1=0) t = 4ln72 = 17.1067 Graph Y=15000 and Y=20000/(1+24e-t/4) to confirm
  • 16. Now, let’s solve some logarithmic equations using the properties of one-to-one functions to help
  • 17. Example 10: Equations with Logarithmic and Constant Terms Solve ln(x – 3) = 5 - ln(x – 3) First put all log terms on one side of equal sign & constants on the other ln(x – 3)+ ln(x – 3)= 5 2ln(x - 3) = 5 ln(x -3) = 5/2 e ln(x -3) = e5/2 x -3 = e5/2 x = e5/2 +3 = 15.1825 Graph Y= ln(x-3) and Y= 5 – ln(x-3) to confirm
  • 18. Example 11: Equations with Logarithmic and Constant Terms Solve log(x – 16) = 2 - log(x – 1) log(x – 16)+ log(x – 1) = 2 log[(x-16)(x-1)] = 2 log(x2 -17x +16) = 2 10 log(x2 -17x +16) = 102 x2 -17x +16 = 100 x2 -17x – 84 = 0 (x +4)(x – 21) = 0 x = -4 and 21, but log(x-16) and log(x-1) are not defined for x = -4, so only x = 21 is valid Graph Y= log(x-16) and Y= 2 – log(x-1) to confirm