SlideShare una empresa de Scribd logo
1 de 141
Descargar para leer sin conexión
UNIVERSIDAD NACIONAL DEL CENTRO DEL PERU
FACULTAD DE INGENIERIA EN INDUSTRIAS ALIMENTARIAS
TALLER DE EXTENSIÓN DE INDUSTRIAS ALIMENTARIAS(T.E.I.A.)
BROMATOLOGÍA APLICADA
Fundamentos, Métodos, Aplicaciones
3ª Edición
Edición Experimental
Huancayo - Perú
2003
luis_Fabri@Yahoo.com
BROMATOLOGÍA APLICADA VOL. I 2
LUIS ARTICA MALLQUI UNCP.
Título Original:
Bromatología Aplicada.
Fundamentos, Métodos, Aplicaciones
@ Libros y editoriales, TEIA., 2003.
Impreso y Hecho en Perú.
Printed and made in Perú.
Reservados Todos Los derechos.
Ninguna parte de ésta publicación puede ser
reproducida; sin previo y Expreso permiso del
propietario del COPYRIGHT.
Del Autor:
LUIS ARTICA MALLQUI
Ingeniero en Industrias Alimentarias
Miembro
T.E.I.A.
ESTUDIOS:
Post Grado EN BROMATOLOGIA - U.N.M.S.M.
Post Grado De Tecnología de Alimentos- UNA. La Molina
Docente: Universidad Peruana Unión - Lima Perú.
Universidad Nacional Del Centro Del Perú - Huancayo Perú.
Universidad Peruana Los Andes.
BROMATOLOGÍA APLICADA VOL. I 3
LUIS ARTICA MALLQUI UNCP.
PREFACIO
En estas últimas décadas estamos convencidos del inmenso poder didáctico que
tiene el área del análisis químico y físico de los alimentos en la formación de los
Ingenieros en Alimentos, Químico-Farmacéuticos, Bromatólogos y Nutricionistas, al
proporcionarles simultáneamente la oportunidad de aplicar los fundamentos de la
Bioquímica, Físico-química, Química analítica y Química de Alimentos en la
evaluación de la Calidad de la sistemas alimenticios frescos y procesados y culminar
su práctica contrastando los resultados a la luz de las Normas Oficiales.
En la obra se busca sistematizar parte de la experiencia acumulada y esta dirigido a
satisfacer las necesidades prioritariamente del personal profesional responsable del
análisis Químico-Físico de los alimentos en el Departamento de Control de Calidad
de las pequeñas y medianas Plantas industriales de alimentos y así mismo de los
estudiantes de Ingeniería en Industrias Alimentarías, Farmacia y Bioquímica,
Bromatología-Nutrición y demás personas que están involucradas con Laboratorios
del Análisis Químico y Físico de Alimentos.
Existen diversos métodos establecidos para el análisis químico-físico de los
alimentos y están al alcance en numerosas obras, como ésta, protocolos del
procedimiento analítico. Empero, en esta se ha querido presentar solo los métodos
en nuestra opinión personal más usados a nivel de laboratorios de análisis de
alimentos, para la evaluación Química y Físico de los alimentos. Los métodos
recomendados originales son los establecidos por la A.O.A.C.(Association of Official
Analytical Chemists) (1998) , el IDF y el Codex Alimentarius, sin embargo en esta, se
recomienda los métodos más aplicables en nuestro medio.
Los temas considerados en la presente obra, básicamente corresponden a los
principios básicos del análisis cuantitativo y cualitativo en el análisis de los alimentos,
sistemas de muestreo, los principios inmediatos de los sistemas alimenticios,
protocolos bromatológicos generales en los alimentos, acidez en sistemas
Alimenticios, pH ó acidez real de sistemas alimenticios y finalmente las misceláneas
bromatológicas.
Por otro lado es oportuno hacer público nuestro agradecimiento a los profesores de
nuestra Alma Mater Universidad Nacional Mayor de San Marcos, nuestros maestros
y colaboradores durante el desarrollo del texto, quienes con sus experiencias están
contribuyendo en la formación de numerosas generaciones de Químico-
Farmacéuticos, tecnólogos en alimentos, y Bromatólogos.
LUIS ARTICA MALLQUI
BROMATOLOGÍA APLICADA VOL. I 4
LUIS ARTICA MALLQUI UNCP.
INTRODUCCIÓN
ANALISIS BROMATOLOGICO DE ALIMENTOS
1.1. Análisis Cuantitativo
Trata de la identificación de substancias. Esta interesado en que
elementos o compuestos están presentes en una muestra.
El análisis cuantitativo, se orienta a la determinación de que
cantidad de una sustancia en particular está presente en una
muestra. La substancia determinada, se llama componente
Deseado ó ANALITA; y puede constituir una pequeña o gran parte
de la muestra analizada.
Si la Analita es más del :
1% de la muestra = Componente principal
0,01% al 1% = Componente menor.
< al 0,01% = Componente vestigial
Una clasificación del análisis cuantitativo es:
Análisis macro = peso de muestra > de 0,1 g
BROMATOLOGÍA APLICADA VOL. I 5
LUIS ARTICA MALLQUI UNCP.
Análisis Semi-micro = Peso de muestra de 10 a 100 mg.
Análisis Micro = peso de muestra de 1 a 10 mg.
Análisis ultramicro = peso de muestra en microgramos
(1 µg = 10 –6
g).
1.2. Análisis Cualitativo
Es el primer encuentro que tiene el estudiante, que trata de
identificar o separar cualitativamente, por precipitación, cambios de
color, sedimentación, etc., pueden emplearse técnicas
instrumentales como la espectroscopia de infrarrojo y resonancia
magnética Nuclear.
1.3. Etapas En El Análisis Químico y Físico De
Alimentos.
a. Muestreo.
Seleccionar una muestra representativa del material que va a
ser analizado, según la naturaleza del sistema alimenticio:
Sólido :Molienda o triturar(reducción de tamaño),
tamizar.
Líquidos:Si el líquido que va a ser analizado es
homogéneo, el procedimiento de muestreo
es fácil; pero si es heterogéneo es más
difícil; líquido que circula en un sistema de
tuberías, se toma en diferentes puntos del
BROMATOLOGÍA APLICADA VOL. I 6
LUIS ARTICA MALLQUI UNCP.
sistema.
Gas : Volumen, velocidad, duración del muestreo.
b. Preparación ó transformación de la Analita
En Una Forma Mensurable.
Conversión de la analita a una forma mensurable.
Antes de hacer la determinación física o química para medir
la cantidad de analito en una muestra, por lo general es
necesario resolver el problema de las “Interferencias”. Las
interferencias deben ser inmovilizados o eliminados mediante
la alteración de su naturaleza química o física.
c. Medición
-El análisis se realizará con la brevedad posible.
-Se realizará con medios químicos, físicos ó biológicos.
La técnica que se utiliza en el laboratorio ha llevado a la
clasificación de los métodos cuantitativos en las
subdivisiones:
a. Análisis Volumétrico:
Requiere la medición del volumen de una solución de
BROMATOLOGÍA APLICADA VOL. I 7
LUIS ARTICA MALLQUI UNCP.
concentración conocida, que se necesita en la reacción
con la analita.
b. Análisis Gravimetrico.
Medición del peso o masa de la analita.
c. Análisis Instrumental.
Uso de instrumento especial en la etapa de medición.
En realidad, los instrumentos se pueden emplear en
cualquier de los pasos del análisis, y en forma de rigor,
las buretas y las balanzas analíticas son instrumentos.
Otros métodos instrumentales: espectroscopia de
absorción y de emisión; potenciometría, polarografía,
culombimetría, conductimetría, polarimetría,
refractometría, Espectrometría de masa, etc.,.
Los análisis se realizan en laboratorios oficiales, sobre
la base de métodos oficiales.
d. Cálculo e Interpretación de las Mediciones.
El proceso final en un análisis es el cálculo del porcentaje de
la analita en la muestra. La interpretación de los resultados
obtenidos de los métodos analíticos no siempre es sencilla,
debido a que se pueden cometer errores con cualquier
BROMATOLOGÍA APLICADA VOL. I 8
LUIS ARTICA MALLQUI UNCP.
medición; el ingeniero en alimentos debe considerar esta
posibilidad al interpretar sus resultados.
Los métodos estadísticos se emplean comúnmente y son
muy útiles para expresar el significado de los datos
analíticos.
- Presentación de resultados
- Un informe técnico.
1.4. Los Errores y El Tratamiento de Datos
La estadística y la teoría de la probabilidad poseen una estructura
lógica y rigurosa para el tratamiento de datos.
a. Errores
Se refiere a la diferencia numérica entre el valor medido y el
valor real.
El valor real de cualquier cantidad es en realidad una
abstracción filosófica, algo que el hombre no está destinado a
conocer.
1.5. Muestreo En El Análisis de Alimentos.
Es la toma de una alicuota o porción de muestra del material
problema a evaluar, bajo ciertas normas establecidas. La toma de
muestras debe realizarse mediante un acta formalizada, por
triplicado ante el titular de la empresa o establecimiento sujeto a
inspección(Madrid, 1996).
BROMATOLOGÍA APLICADA VOL. I 9
LUIS ARTICA MALLQUI UNCP.
Una muestra puede definirse como “una porción o artículo que
indica la calidad de todo lo que ha sido tomado”. Como quiera que
la mayoría de alimentos que hay que muestrear no son
homogéneos en su confección o en una presunta adulteración, no
suele ser posible tomar una muestra perfecta.
El objetivo del muestreo es seleccionar una porción o un número
de recipientes o de unidades de un producto que sea altamente
representativo de una partida o lote de alimentos del que se ha
tomado.
Un lote puede ser una porción de una partida de alimentos
enviados o almacenados que lleve la misma codificación, sea un
producto distinto del resto de la partida o sea diferente en cualquier
otra forma. El tamaño de la muestra debe ser suficiente para
permitir su análisis de laboratorio, o su repetición su fuera
necesaria. Es importante sincronizar las prioridades de inspección
y de laboratorio con el fin de garantizar que las muestras de una
inspección se analicen con prontitud.
A. CLASES DE TOMA DE MUESTRAS
a.1. Toma de muestras selectiva
BROMATOLOGÍA APLICADA VOL. I 10
LUIS ARTICA MALLQUI UNCP.
Por lo general, las muestras se toman para ilustrar o
documentar condiciones insatisfactorias observadas
por el inspector, o para permitir el análisis en
laboratorio de un alimento posiblemente adulterado.
La tomo de muestras se puede realizar en cualquier
punto de la cadena de producción, durante una
inspección, en el almacén, en el establecimiento
mayorista o en el mercado o establecimiento minorista.
Las muestras que se toman como consecuencia de
reclamaciones de clientes, observaciones de la
inspección o cualquier otro motivo, se suelen
“seleccionar”, es decir, se eligen de forma que ofrezcan
la mejor oportunidad de confirmar determinados
hechos conocidos.
a.2. Toma de muestras objetiva
La toma de muestras objetiva es bastante directa, ya
que suele haber indicios u otra información que
conduzca a las unidades de alimentos seleccionados
para la muestra.
Por su parte, la toma de muestras objetiva puede
resultar complicada, ya que es difícil proceder con
objetividad cuando se trata de determinar la auténtica
BROMATOLOGÍA APLICADA VOL. I 11
LUIS ARTICA MALLQUI UNCP.
calidad de un lote determinado de alimentos no
homogéneos. El inspector se preguntará siempre si la
muestra recogida fue demasiado pequeña, o
excesivamente grande, y si la selección se hizo
realmente al azar.
1.5.1. Características de Muestreo
La toma de muestra debe realizarse por triplicado
homogéneamente bajo las siguientes recomendaciones:
1. Acondicionados
2. Precintados
3. Lacrados
4. Etiquetados
Además, debe indicarse los siguientes datos:
5. Identidad de la muestra
6. Contenido
7. Código
8. Fecha de muestreo.
1.5.2. Deposito de la Muestra
El depósito de las unidades Muestreadas se hará de la
siguiente forma:
BROMATOLOGÍA APLICADA VOL. I 12
LUIS ARTICA MALLQUI UNCP.
a. Fabricantes (Empresa).
01 muestra quedará en poder del fabricante bajo deposito,
en unión de una copia del acta con la obligación de
conservarla en perfecto estado para su posterior
utilización en prueba contradictoria si es necesario. Las
otras dos muestras quedarán en poder de la inspección.
b. Distribuidores del Producto.
Sólo quedará en su poder una copia del acta de
muestreo.
Las tres muestras serán retiradas por la inspección, y
luego una de las muestras se podrán a disposición del
fabricante, envasador o interesado autorizado.
BROMATOLOGÍA APLICADA VOL. I 13
LUIS ARTICA MALLQUI UNCP.
CAPITULO I
LOS PRINCIPIOS INMEDIATOS COMO
NUTRIENTES EN LOS SISTEMAS
ALIMENTICIOS
1.1.PROTEÍNAS
Las proteínas son compuestos altamente polimerizados, que están
formados por α-aminoácidos de configuración L. También se unen
a componentes no proteícos: estas proteínas complejas se
denominan proteidos.
La clasificación de las proteínas, se puede apreciar en la figura 1.
Las proteínas se encuentran entre los nutrientes más importantes,
BROMATOLOGÍA APLICADA VOL. I 14
LUIS ARTICA MALLQUI UNCP.
Junto con los lípidos y los carbohidratos. Estos es así no por su
función energética(1 g proteína = 4,1 Kcal =17,2 KJ), sino porque
son necesarios, por su naturaleza nitrogenada, para la síntesis de
compuestos propios del organismo implicados en la estructura de
las membranas junto con los lipoides, como glicoproteidos en
funciones de lubricación y como nucleidos que posibilitan la
síntesis de las proteínas propias del organismo, así como la
formación de los cromosomas y la división celular.
El valor nutritivo de las numerosas proteínas alimentarias
existentes dependen de su digestibilidad, que depende a su vez de
la estructura, es decir, de su composición aminoacídica. El
contenido de aminoácidos esenciales( de los aproximadamente 30
aminoácidos 8(+2) son esenciales) determina el valor biológico, es
decir, el mayor aprovechamiento fisiológico de una proteína por
parte del organismo. Rige la ley del mínimo: si la oferta de
aminoácidos esenciales es demasiado limitada, el conjunto del
rendimiento de las reacciones de síntesis dependerá del
aminoácido que esté presente en menor cantidad(= aminoácido
limitante). Los aminoácidos limitantes más importantes son la
lisina(en cereales y papas) y la metionina(en carnes y leche).
Las proteínas se encuentran entre los nutrientes más importantes,
Junto con los lípidos y los carbohidratos. Estos es así no por su
función energética(1 g proteína = 4,1 Kcal =17,2 KJ), sino porque
son necesarios, por su naturaleza nitrogenada, para la síntesis de
compuestos propios del organismo implicados en la estructura de
BROMATOLOGÍA APLICADA VOL. I 15
LUIS ARTICA MALLQUI UNCP.
las membranas junto con los lipoides, como glicoproteidos en
funciones de lubricación y como nucleidos que posibilitan la
síntesis de las proteínas propias del organismo, así como la
formación de los cromosomas y la división celular.
Figura. 1. Clasificación de las proteínas
Elastina
Colágeno
Escleroproteínas Fibrinógeno
(proteínas fibrilares) Fibroína de
la seda.
Miosina
Queratina
Proteínas
Sencillas
Albúminas
Globulinas
Proteínas sencillas Prolaminas
PROTEINAS (proteínas globulares) Histonas
Protaminas
Gluteninas
Nucleoproteidos
Lipoproteidos
Fosfoproteidos
Proteidos Glicoproteídos, Cromoproteidos, metaloproteidos
BROMATOLOGÍA APLICADA VOL. I 16
LUIS ARTICA MALLQUI UNCP.
El valor nutritivo de las numerosas proteínas alimentarias
existentes dependen de su digestibilidad, que depende a su vez de
la estructura, es decir, de su composición aminoacídica. El
contenido de aminoácidos esenciales( de los aproximadamente 30
aminoácidos 8(+2) son esenciales) determina el valor biológico, es
decir, el mayor aprovechamiento fisiológico de una proteína por
parte del organismo. Rige la ley del mínimo: si la oferta de
aminoácidos esenciales es demasiado limitada, el conjunto del
rendimiento de las reacciones de síntesis dependerá del
aminoácido que esté presente en menor cantidad(= aminoácido
limitante).
Los aminoácidos limitantes más importantes son la lisina(en
cereales y papas) y la metionina(en carnes y leche).
En la siguiente tabla se recoge el contenido proteíco y valor
nutritivo de los alimentos más importantes que aportan proteínas.
BROMATOLOGÍA APLICADA VOL. I 17
LUIS ARTICA MALLQUI UNCP.
El valor nutritivo se expresa en unidades NPU(net protein
utilization): un valor de NPU de 100 equivale al valor nutritivo de
proteína ideal.
Alimento Valor NPU Contenido Proteico
Huevos
Legumbres
Harina de trigo
Papas
Carne magra de vacuno
Pescado
Leche
94
30
35
67
76
80
86
13
21-26
10-12
2
19
18 aprox.
3-4
Fuente: Matissek, 1998
1.1.1. Caracterización de Proteínas
Las proteínas tienen una estructura molecular
BROMATOLOGÍA APLICADA VOL. I 18
LUIS ARTICA MALLQUI UNCP.
extraordinariamente compleja. La analítica de los
compuestos de este tipo es como consecuencia también
extraordinariamente complicada. Por ello, en este texto
sólo se darán las indicaciones acerca de cómo determinar
las proteínas y de cómo caracterizarlas con más detalle.
1.1.2. Reacciones Generales de detección
Las siguientes pruebas se realizan directamente en el
material a investigar.
a. Reacción de Biuret
Los polipéptidos(la mínima unidad de reacción es el
tripéptido) reacción con una disolución diluida de
sulfato cúprico en medio fuertemente alcalino,
mostrando una coloración azul caracteristica:
O R
║ 
R C  CH
  
— CO  CH  NI NH  CO  CH  NH 
II
Cu
—HN — CH —CO — HN IN — CH — CO —
│ | | |
R HC — C R
R O
BROMATOLOGÍA APLICADA VOL. I 19
LUIS ARTICA MALLQUI UNCP.
b. Reacción con la Ninhidrina
Un caso especial de degradación de Strecker es la
reacción de la Ninhidrina, que es de gran importancia
para la determinación fotométrica cuantitativa de los
aminoácidos. La sustancia azul violeta formada
absorbe a 570 nm. Con prolina se forma una sustancia
amarilla con una longitud de onda de 440 nm.
c. Reacción de las Xantoproteínas
Al añadir ácido nítrico concentrado en presencia de
aminoácidos aromáticos se forman nitroderivados de
color amarillo.
d. Reacción con sulfuro de plomo
Al añadir una disolución de acetato de plomo en medio
fuertemente alcalino se observa una coloración negra
( presencia de compuestos proteicos azufrados).
Las Proteínas estructuralmente son polímeros cuyas unidades
básicas son aminoácidos unidos por un enlace característico que
recibe el nombre de enlace peptídico. La secuencia de grupos
BROMATOLOGÍA APLICADA VOL. I 20
LUIS ARTICA MALLQUI UNCP.
aminoácidos caracteriza a una proteína y las propiedades físicas,
químicas y nutricionales dependen de la composición en
aminoácidos de la molécula protéica y de la forma como se
enlazan para conformar su estructura. El nitrógeno representa en
la mayoría de las sustancias proteicas un porcentaje relativamente
constante, alrededor del 16%, su determinación sirve como medida
del contenido proteico en los alimentos.
1.2.Dosificación De Las Proteínas En los
Alimentos
En la alimentación la dosificación de las proteínas constituye uno
de los controles analíticos fundamentales, a causa de las
repercusiones nutricionales que conllevan a una insuficiencia o a
un desequilibrio en aminoácidos.
La dosificación analítica del nitrógeno se puede:
a. Determinación del contenido en
nitrógeno(método Kjeldahl)
a.1. Activación neutrónica
b. La dosificación de Funciones o radicales:
b.1. Reacción química del enlace peptídico o dosificación
BROMATOLOGÍA APLICADA VOL. I 21
LUIS ARTICA MALLQUI UNCP.
de las uniones peptídicas y posterior medida
fotométrica(por ej., Método de Biuret; concentraciones
entre 200 a 1000 mg de proteína)
b.2. Reacción química de determinados aminoácidos de la
proteína y posterior medida fotométrica(por ej.,
determinación con el reactivo Folin-Ciocalteu;
reacciona fundamentalmente la tirosina).
b.3. Método Lowry(concentraciones entre 20 y 200 mg de
proteínas)
b.4. Absorción de las proteínas en el
ultravioleta(determinación de los aminoácidos
aromáticos triftófano, tirosina y fenilalanina; los
máximos de absorción se encuentran en torno a los
280 nm)
b.5. Absorción en el cercano al infra-rojo
b.6. Medida de la turbidez por floculación de la proteína
disuelta mediante un precipitante de proteínas.
La aplicación de éstos análisis en la industria alimentaria son:
Detección y dosificación de las enzimas en los alimentos:
Análisis del cuajo comercial, actividades amilásicas de la cebada.
Detección de la adulteración de leche y los productos
lecheros.
Estudio de la desnaturalización de las proteínas de leche, por calor.
BROMATOLOGÍA APLICADA VOL. I 22
LUIS ARTICA MALLQUI UNCP.
Detección de fraudes en los productos cárnicos: presencia de
carne de vaca, caballo, aves, en los productos dichos "puro cerdo":
Adición de proteínas de leche o de proteínas de soya.
La identificación de cereales: harina de trigo blando o de trigo
duro, proteína de soya, maní etc.
En 1883, Johan Kjeldahl, Científico danés (1840-1900) publico
en la Z. Anal. Chem. El método que hoy lleva su nombre,
destinado a determinar el nitrógeno en muestras orgánicas, de
origen animal y vegetal.
La digestión Kjeldahl transforma proteínas, aminas y otros
compuestos orgánicos nitrogenados en derivados amónicos. Al
añadir a éstos una solución fuertemente alcalina, se libera
amoniaco que es entonces eliminado por destilación y valorado.
El método de Kjeldhal, consiste en :
1. Oxidación de la muestra con H2SO4 y catalizadores, durante
la cual la materia orgánica se destruye y el nitrógeno se
convierte en sulfato ácido de amonio según la reacción:
BROMATOLOGÍA APLICADA VOL. I 23
LUIS ARTICA MALLQUI UNCP.
H2SO4
N2 Orgánico -------------------→ CO2 + NH4 HSO4 + H2O
Catalizador
2. Descomposición del sulfato ácido de amonio por medio de
un exceso de álcali fuerte para liberar el amoníaco, el cual se
recoge por destilación sobre ácido bórico. Las reacciones
que suceden son:
NH4 HSO4 + 2 NaOH NH3 + Na2 SO4 +
2H2O
NH4 OH + H3 BO3 NH4 H2 BO3 + H2 O
3. Titulación del borato de amonio formado con solución patrón
de ácido clorhídrico o ácido sulfúrico, usando como
indicadores de punto final una mezcla de rojo de metilo y
azul de metileno o una mezcla de rojo de metilo y verde de
bromocresol. La reacción de titulación se muestra de la
BROMATOLOGÍA APLICADA VOL. I 24
LUIS ARTICA MALLQUI UNCP.
siguiente forma:
NH4 H2 BO3 + Hcl NH4 Cl + H3 BO3
La cantidad de proteína bruta se obtiene multiplicando el
porcentaje de nitrógeno determinado, por el factor 6,25
generalmente; para la proteína de cereales se multiplica por el
factor 5,7 y para la proteína de leche el factor utilizado es 6,38.
Este método así como otros como el colorimétrico en el cual se
mide el derivado amoniacal formado con el fenol o con hipoclorito
sódico, se basa en la medición del amoniaco formado por todo el
nitrógeno presente en la muestra, por lo cual el valor obtenido no
es el real a no ser que de alguna manera se elimine el nitrógeno
no proteico en la preparación de la muestra.
Además estos métodos dan una apreciación cuantitativa de la
proteína presente mas no orientan sobre la calidad de la misma, su
riqueza en aminoácidos y capacidad de asimilación, factores que
determinan el valor nutricional de la proteína.
BROMATOLOGÍA APLICADA VOL. I 25
LUIS ARTICA MALLQUI UNCP.
1.3. CARBOHIDRATOS Y FIBRA BRUTA
Mediante un procedimiento analítico sencillo no se puede
determinar el gran grupo de carbohidratos puesto que está
integrado por numerosas entidades químicas que carecen de una
característica analítica común. Henneberg y stohman, citados por
Becker, dividierón por tanto, toda esta fracción en dos grupos: Una
parte insoluble en ácidos y bases a la que llamarón “Fibra bruta” y
una fracción soluble a la que denominarón “Extracto no
nitrogenado”(ENN). En la fracción fibra bruta se encuentran
comúnmente: Celulosa, pentosanas, lignina, suberina, cutina,
alginatos y pectinas.
La celulosa es un polimero lineal de unidades de anhidroglucosa
unidas entre ellas por junturas glicosídicas de tipo β-1,4. El grado
de polimerización es del orden de 1 0000 unidades por molécula.
BROMATOLOGÍA APLICADA VOL. I 26
LUIS ARTICA MALLQUI UNCP.
Las hemicelulosas son heteropolisacáridos cortos, ramificados,
fácilmente hidrolizables enzimáticamente. Por ejemplo las de caña
de maíz contiene 70% de xilosa, 9% de arabinosa, 14,5% de
glucosa y 5,9% de otros. Los azúcares C5 (xilosa y arabinosa) son
mayoritarios, la glucosa siempre está presente y los otros están
constituidos por los ácidos urónicos y otros azúcares en menor
proporción. La hidrólisis enzimática de las hemicelulosas
proporciona esencialmente pentosas no muy útiles para fermentar
hasta alcohol pero útiles para la fermentación aceto-butílica.
Las ligninas son polímeros tridimensionales de origen fenólico,
sintetizados por la deshidrogenasa radical de tres alcoholes fenil-
propenóicos: El alcohol cumarílico, el alcohol coniferilico y el
alcohol sinapílico; las uniones entre moléculas basales son de
diferentes tipos, muchas de las cuales no son hidrolizables.
Los productos de degradación de las ligninas no son
prácticamente fermentables. La celulosa, la hemicelulosa y las
ligninas en su estado natural son prácticamente insolubles en
agua.
BROMATOLOGÍA APLICADA VOL. I 27
LUIS ARTICA MALLQUI UNCP.
Los carbohidratos se trata por lo general de compuestos
polihidroxicarbonílicos y de compuestos estructuralmente
relacionados derivados de ellos. Debido a su abundancia, los
carbohidratos forman parte de las sustancias naturales más
importantes, presentándose como componentes dulces de los
frutos y como sustancias de reserva importante en el reino
vegetal(almidón) y animal(glucógeno). Un 1 g de carbohidrato=
4,1Kcal=17,2 KJ.
BROMATOLOGÍA APLICADA VOL. I 28
LUIS ARTICA MALLQUI UNCP.
Pentosas, hexosas, heptosas
MONOSACÁRIDOS
Desoxi-,anhidro-,aminoazúcares
Cetosas
Acidos ónicos,ácidos urónicos
Azúcares-éster,-alcohol,-éter
OLIGOSACARIDOS Di-, Tri-, Tetra- --------- Heptasacáridos
Almidón,glucógeno
Celulosa
Homopolisacáridos Dextrinas, Dextranos
Sacaridos INulina
Pectina
POLISACÁRIDOS
Hemicelulosa
Heteropolisacáridos Gomas vegetales
Agar agar
GLUCÓSIDOS
Fuente: Matissek, Schnepel y Steiner ; 1998
Figura 2. Clasificación de los Carbohidratos (Sacáridos)
BROMATOLOGÍA APLICADA VOL. I 29
LUIS ARTICA MALLQUI UNCP.
1.3.1. Determinación de Mono y Oligosacáridos
Existe una gran variedad de
métodos para su determinación que se basan en distintos
principios. La sensibilidad de cada método depende, entre
otras cosas, de la composición de la muestra o de su
matriz y es muy variable:
a. Métodos cromatográficos
b. Medida de la capacidad rotatoria óptica(polarimetría).
c. Oxidación del grupo Aldehído/ceto en disolución salina
d. Métodos enzimáticos
e. Métodos fotométricos tras su conversión en compuestos
coloreados(Matissek y Et. al; 1998).
1.4.Determinación de FIBRA BRUTA.
El método empleado para la determinación de la Fibra bruta,
consiste en efectuar dos digestiones. La primera con ácido
sulfúrico y la segunda con hidróxido de sodio. La finalidad del
método es la de eliminar las proteínas, carbohidratos solubles,
residuos de grasas, vitaminas y otros compuestos diferentes que
interfieren en su determinación.
El fundamento del método es asemejar este proceso al que
desempeña el organismo en su función digestiva.
BROMATOLOGÍA APLICADA VOL. I 30
LUIS ARTICA MALLQUI UNCP.
En años recientes se han propuesto otros métodos que utilizan
diferentes mezclas de ácidos como el de White House (acético +
nítrico + tricloroacético) o el de Van Soest que utiliza una sal de
amonio cuaternario (bromo de cetil trimetil amonio) en medio
sulfúrico, para producir la hidrólisis. A continuación se especifican
las reacciones involucradas en el análisis de fibra cruda por
diferentes métodos:
FIGURA 3. REACCIONES INVOLUCRADAS EN EL ANALISIS DE
FIBRA CRUDA POR EL METODO DE WEENDE- OFICIAL
AOAC.
1. Hidrólisis ácida :
a. Carbohidratos
(Cn H2n On )m --------------------→ m Cn H2n On
n = 5 - 6
b. Proteínas
O R2 H O=C-OH
  | | H+
R - CH - C - N - C - C - N - C - R3
   
NH2 H H O
n
BROMATOLOGÍA APLICADA VOL. I 31
LUIS ARTICA MALLQUI UNCP.
R1 - CH - C = O + nR - CH - C = O + R3 - CH -C=O
  
NH2 NH2 NH2
R1 ≠ R2 ≠ R3 = Radical
2. Hidrólisis de Proteína
O R2 H O=C-OH
 | | | H+
R - CH - C - N - C - C - N - C - R3
  
NH2
H H O n
ONa ONa ONa
  
R1 - CH - C = O + nR - CH - C = O + R3 - CH -C=O
  
NH2 NH2 NH2
R1 ≠ R2 ≠ R3 = Radical
BROMATOLOGÍA APLICADA VOL. I 32
LUIS ARTICA MALLQUI UNCP.
FIGURA 4. REACCIONES INVOLUCRADAS EN EL ANALISIS DE
FIBRA CRUDA POR EL METODO DE VAN SOEST.
Carbohidratos :
H+
(Cn H2n On )m --------------------→ m Cn H2n On
n = 5 - 6
Proteínas
O R2 H O=C-OH
 | | | H+
R - CH - C - N - C - C - N - C - R3
   
NH2 H H O (S)
n
OH R2 OH O= C - OH
 | | 
R1 — CH — C — N — C — C — N — C — R3
   ║  |
NH2 H H O H H (L)
n
R1 ≠ R2 ≠ R3 = Radical
BROMATOLOGÍA APLICADA VOL. I 33
LUIS ARTICA MALLQUI UNCP.
1.5.Fibra Dietaria.
En la década de los ochenta los investigadores en alimentos han
enfocado su interés sobre la fracción de la fibra bruta que puede
ser útil para los procesos digestivos en el tracto humano. A esta
fracción se le ha dado el nombre de fibra dietaria.
En esta fracción se incluyen compuestos tales como el almidón,
los polisacáridos no celulósicos, la celulosa, la lignina, la
hemicelulosa y sustancias pécticas. Se han ideado numerosos
métodos de determinación de las diversas fracciones que la
constituyen, sin embargo hasta el momento no ha sido adoptado
como oficial ninguno de ellos. Por ejemplo Anderson en 1988,
propuso que la fibra dietaria total puede calcularse conociendo las
fracciones determinadas como polisacáridos no almidones totales,
polisacáridos no almidones solubles, polisacáridos no celulósicos
insolubles, celulosa y lignina.. Algunos de los métodos propuestos
combinan la acción de enzimas amilasas para digerir la fracción
almidón con métodos químicos de hidrólisis ácida.
BROMATOLOGÍA APLICADA VOL. I 34
LUIS ARTICA MALLQUI UNCP.
1.6.EXTRACTO NO NITROGENADO(E.N.N.)
En esta fracción se agrupan mono y disacáridos, la parte soluble
de la celulosa, pentosanas y lignina, las hemicelulosas, el almidón,
la inulina y toda clase de azúcares, materias pécticas, ácidos
orgánicos y otras materias solubles libres de nitrogeno,
constituyendo así la fracción más valiosa del alimento.
El porcentaje de extractivos no nitrogenados se determina por
cálculo como ya se explicó, restando de 100 los porcentajes de
humedad, grasa, fibra, cenizas y proteína o también, si se ha
calculado el porcentaje de materia seca, se resta de este las
cantidades correspondientes a los contenidos de grasa, fibra,
ceniza y proteínas expresados todos como porcentajes. Este
procedimiento está afectado por las inexactitudes propias de la
determinación analítica de los otros componentes, por eso sus
resultados son relativamente aproximados.
1.7.CENIZAS O MATERIAL MINERAL
La naturaleza y calidad de las variadas combinaciones minerales
se encuentran en las plantas alimentarias, son difíciles de
determinar aún cuando el resultado de la incineración del material
permite una orientación sobre su cantidad aproximada, puesto que
en el proceso cambia la naturaleza de las combinaciones
originales debido a la destrucción de la materia orgánica.
BROMATOLOGÍA APLICADA VOL. I 35
LUIS ARTICA MALLQUI UNCP.
En general las cenizas se componen de carbohidratos originados
en la materia orgánica y no propiamente de la muestra. La
determinación debe hacerse aumentando progresivamente la
temperatura del horno, hasta alcanzar el rojo oscuro (± 500°C). No
se debe dejar pasar de esta temperatura pues se podría
descomponer los carbonatos presentes y se volatilizarían otras
sustancias como los compuestos de fósforo, produciendo así
resultados erróneos. Otra forma de destruir la materia orgánica es
por oxidación húmeda, con ácido nítrico o sulfúrico concentrados..
El análisis de las cenizas debe estar enfocado a la determinación
de calcio, fósforo, potasio, manganeso y hierro y demás elementos
que tienen significado en alimentación humana. Los elementos
presentes pueden determinarse por numerosos métodos. El
método propuesto en esta revisión comprende la Incineración de la
muestra y la solubilización de las cenizas con ácido clorhídrico
para formar los cloruros respectivos, los cuales pueden valorarse
finalmente, por métodos volumétricos, colorimétricos o por
absorción atómica.
1.8.Extracto Etéreo o Grasa Bruta
Las grasas verdaderas o triglicéridos son compuestos orgánicos
carentes de nitrogeno, que se forman en el metabolismo vegetal y
animal y que poseen desde un punto de vista fisiológico un
elevado valor calorífico.
BROMATOLOGÍA APLICADA VOL. I 36
LUIS ARTICA MALLQUI UNCP.
Son nutrientes con mayor poder energético(1 g de grasa = 9,3 Kcal
=38,KJ). Las grasas, por lo general , se encuentran asociadas con
numerosas sustancias acompañantes(lipoides), estrechamente
relacionadas bioenergéticamente unas con otras. Las grasas y sus
sustancias acompañantes, que en conjunto se denominan también
lípidos, se diferencian entre sí básicamente por su estructura
química, aunque presentan en su totalidad propiedades químico-
físicas similares, como por ejemplo la solubilidad en disolventes
orgánicos(Matissek, et. al; 1998)
Este comportamiento químico-físico se emplea en analítica, por lo
que la extracción con disolventes orgánicos es un procedimiento
para la determinación del contenido total de grasa. Esta medida
tiene importancia para evaluar el valor nutritivo, en los controles de
calidad y para el reconocimiento de falsificaciones.
El término “Lípidos” hace referencia” a un grupo de sustancias
cuya definición es aún menos precisa que la de los hidratos de
carbono. Generalmente, hace referencia a un grupo heterogéneo
de sustancias relacionadas con los sistemas biológicos, que tienen
en común su insolubilidad en el agua y su solubilidad en
disolventes no polares, como los hidrocarburos, o en los alcoholes.
BROMATOLOGÍA APLICADA VOL. I 37
LUIS ARTICA MALLQUI UNCP.
En este grupo, se incluyen los aceites y las grasas( No existe
distinción formal entre grasas y aceite. Los aceites son líquidos y
las grasas sólidos a la temperatura ambiente) de la dieta, junto con
los llamados fosfolípidos, asociados a las membranas
celulares(Coultate, 1998).
Los lípidos de todos los sistemas alimenticios son ésteres de
ácidos grasos de cadena larga, pero existen muchos otros lípidos
que no responden a estas características estructurales. Entre ellos,
se incluyen los esteroides y los terpenos pero, con la excepción del
colesterol(y sus ésteres de ácidos grasos de cadena larga), Las
únicas sustancias de este tipo que adquieren cierta relevancia en
los alimentos son las vitaminas, pigmentos o compuestos
aromatizantes(Coultate, 1998).
BROMATOLOGÍA APLICADA VOL. I 38
LUIS ARTICA MALLQUI UNCP.
Figura 5. Clasificación de Lípidos
GLICÉRIDOS
LIPIDOS
SENCILLOS
CERAS
ACIDOS GRASOS
ALCOHOLES
DERIVADOS
LIPIDOS LIPIDICOS
LIPOVITAMINAS
HIDROCARBUROS
Ác. Fosfátidos
(lecitina)
Fosfátidos de
GLICEROFOSFÁTIDOS inositol
PLASMALÓGENOS
CEFALINAS
LIPIDOS LIPIDOS COMPELJOS
COMPLEJOS
Esfingomielina
ESFINGOLÍPIDOS Cerebrósidos
(sulfátidos)
Gangliósidos
Fuente: Matissek, Schnepel y Steiner ; 1998
BROMATOLOGÍA APLICADA VOL. I 39
LUIS ARTICA MALLQUI UNCP.
CAPITULO II
LABORATORIO DE ENSAYO DE
BROMATOLOGÍA
Es importante remarcar que en una planta Industrial de Alimentos, el
laboratorio de Bromatología juega un papel fundamental en la
evaluación de la calidad permanente que deben cumplir la materia prima
así como los derivados elaborados.
Es conocido por todos que el Laboratorio puede definirse como el lugar
donde los investigadores y los técnicos obtienen datos experimentales
reproducibles y que permitan sustentar una investigación, una
evaluación, o fundamentar el diagnóstico del estado de las materias
primas así como de los derivados procesados.
BROMATOLOGÍA APLICADA VOL. I 40
LUIS ARTICA MALLQUI UNCP.
El proceso de implementación, tanto del diseño como de su
equipamiento, debe ser realizado con todas las especificaciones que
requiere el caso y con el concurso de personal especializado. Por otro
lado las normas básicas que deben conocer el personal especializado
que trabajan en el laboratorio de una industria de leche deben ser
establecidos a nivel del departamento de Control de calidad y el analista
de Alimentos y derivados debe tener presente las siguientes
Mandamientos fundamentales:
2.1.LOS DIEZ MANDAMIENTOS COMO NORMA
GENERAL DEL LABORATORIO DE
BROMATOLOGIA
1. Establecer y optimizar los Protocolos de análisis de los sistemas
alimenticios, en relación a las normas establecidas,
considerando a los analistas responsables; Disponibilidad de
materiales, y equipos.
2. Previo al inicio del desarrollo de cualquier protocolo de análisis
de sistemas alimenticios; es necesario que el material de vidrio,
equipos, deben estar correctamente preparados, limpios,
estériles, y correctamente calibrados.
3. La práctica del orden, limpieza, puntualidad deben ser normas
establecidas en el analista responsable, y de esta forma
mantener una sistema de trabajo muy eficiente y confiable.
BROMATOLOGÍA APLICADA VOL. I 41
LUIS ARTICA MALLQUI UNCP.
4. Debe conocer sobre normas de seguridad en el uso y manipuleo
de los materiales y los reactivos que se usan, y siempre debe
ser escrupuloso en la limpieza de los materiales y exigir que los
reactivos deben presentar una pureza requerida, para evitar
cualquier error en el análisis y posibles contaminaciones. Todo
reactivo preparado, debe ser valorado a la concentración
requerida y conservado en frascos de reactivos debidamente
limpios y etiquetados, anotando su fecha de preparación.
5. Las evaluaciones químicas, físicas, deben realizarse con
bastante cuidado; para tal efecto, una vez obtenido los datos,
debe contarse con un libro adecuado de registros y anotase con
mucho cuidado y responsabilidad.
6. El analista, debe contar con un uniforme de trabajo y que
básicamente consiste en un mandil de color blanco, Calzados
deben ser de tacón bajo y cerrados de color blanco o zapatos
de goma, delantal de goma, una gorra, y para análisis
específicos debe usar gafas y guantes de goma.
7. El analista debe cumplir con normas muy rígidas, el cabello
debe mantener corto o estar sujetado (si es de cabello largo
debe retirarse y atarse) y siempre debe mantener una higiene
personal escrupulosa.
8. El sistema de codificado de muestras debe ser establecido con
un patrón adecuado, para evitar cualquier confusión y/o
permutación; en cada muestra como mínimo debe indicarse, su
código, la fecha, etc.,.
BROMATOLOGÍA APLICADA VOL. I 42
LUIS ARTICA MALLQUI UNCP.
9. El analista debe elaborar un adecuado sistema de reporte de
diario de trabajo de laboratorio, en donde se considera los
análisis rutinarios, número de muestras por línea, frecuencia de
análisis, fecha de evaluación, analista responsable; además
estos reportes deben ser elaborados cotidianamente con mucha
claridad y responsabilidad.
10.Como medida de seguridad, y con el objeto de que la empresa
permanentemente eleve la calidad de los productos lácteos
procesados, el personal profesional y técnico,
permanentemente debe someterse a una capacitación,
orientación rigurosa, con el objeto de renovar y estar
actualizado sobre las innovaciones en el análisis de leche y en
el uso y manipuleo de materiales y equipos.
2.2.OPERACIONES FUNDAMENTALES EN EL
LABORATORIO DE ENSAYO DE
BROMATOLOGIA
Los principios fundamentales de actuación a nivel de laboratorio
en una Planta de Alimentos, requiere de una conducta profesional
eficiente y de excelencia; Todos los que son responsables del
laboratorio deben practicar los principios de una buena
organización con el objetivo de lograr una máxima eficacia y por
ende una calidad total.
BROMATOLOGÍA APLICADA VOL. I 43
LUIS ARTICA MALLQUI UNCP.
El Personal Profesional y técnico, deben ser conocedores de las
especificaciones, uso de todos los materiales y equipos que se
utilizan para el análisis de los sistemas alimenticios y comestibles,
así como de su mantenimiento y limpieza; considerando estos
aspectos a continuación se establece que las operaciones
fundamentales a nivel del laboratorio de Ensayo de Bromatología
son:
a. Limpieza.
El objetivo fundamental de ésta operación, es para obtener
resultados fiables y reproducibles sin la inducción de cualquier
error debido al efecto de un lavado deficiente y/o material
extraño presente en el material de análisis.
Para realizar la operación de lavado o limpieza, generalmente
se combina la limpieza mecánica que implica el arrastre de
sustancias extrañas con la limpieza química que consiste en
disolver o destruir cualquier materia orgánica adherida en el
material de vidrio o equipo. El agente para la limpieza mecánica
es el agua, coadyuvado por un cepillo arrastra cualquier residuo
presente en el material, pero esta limpieza es insuficiente por lo
que es necesario realizar una limpieza química.
BROMATOLOGÍA APLICADA VOL. I 44
LUIS ARTICA MALLQUI UNCP.
La limpieza química, se realiza con agentes químicos
inorgánicos, para este fin utilizamos una mezcla sulfocrómica de
ácido sulfúrico y dicromato de potasio y se lava en caliente, esta
mezcla oxida y degrada a la materia orgánica; también se
utiliza ácido clorhídrico o nítrico que fundamentalmente
disuelven precipitados adheridos a las paredes del material de
vidrio así como de accesorios y equipos; el uso de los jabones y
detergentes son los responsables de la solubilización de la
masa lipídica adherida al material.
Una vez terminado la operación de lavado o limpieza del
material o equipo, es necesario realizar por lo menos un
enjuague con agua corriente de grifo unas tres veces y otras
tres con agua destilada estéril; concluido cada enjuague se
debe escurrir y luego someter a un secado en una estufa con
aire seco o esterilizarlos dependiendo del tipo de material y su
uso.
BROMATOLOGÍA APLICADA VOL. I 45
LUIS ARTICA MALLQUI UNCP.
b.Enmasado o Pesado
Es un punto crítico del proceso del desarrollo del protocolo de
análisis, la cual se utiliza para determinar la masa de todos los
tamaños de muestras a analizar, así como de los reactivos tanto
en su dosificación como durante su preparación.
El equipo principal para estos casos es la balanza analítica de
una sensibilidad establecida; las balanzas pueden ser de
sistemas de pesas, como las digitales. Las balanzas analíticas
más usadas a nivel de laboratorio de Bromatología son con
capacidades hasta 100 gramos con una precisión de 0,0001
gramos.
c.Pipeteo y Aforado
Es necesario que la medición de líquidos volumétricamente sean
con bastante precisión y cuando se trata de volúmenes muy
pequeños se debe realizarse con pipetas específicas; Las
pipetas son tubos capilares abiertos en ambos extremos y
presentan una graduación volumétrica y otras son aforadas.
BROMATOLOGÍA APLICADA VOL. I 46
LUIS ARTICA MALLQUI UNCP.
La mayoría de las pipetas graduadas utilizadas en el análisis de
Alimentos, corresponde al líquido que cae espontáneamente al
destapar el extremo superior (sin soplar), y otras pipetas
requieren para expulsar la totalidad del líquido por un soplado
(tipo "Blow out").
La medición de volúmenes muy pequeños se realiza con
micropipetas y microjerinjas; para el caso de mediciones de 0,1
a 10 mL. se usan pipetas con diámetros anchos en donde se
observa la formación de menisco líquido. En estos casos la
lectura se debe realizar cuando el menisco es tangente a la
línea que señala la graduación o aforo. Cuando se quiere medir
volúmenes de 10 a 1 000 mL. se utilizan fiolas o pipetas
debidamente aforados a la temperatura de trabajo de la fiola o
pipeta.
d. Ajuste de Soluciones y Diluciones
Es necesario que la preparación y ajuste de soluciones y
disoluciones a nivel de laboratorio deben ser evaluados y
correctamente valorados previo al inicio de la ejecución del
protocolo de análisis. Es muy importante recordar, que una
forma más común de diluir una solución patrón es aplicando un
elemental cálculo de dilución a nivel cuantitativo según la
BROMATOLOGÍA APLICADA VOL. I 47
LUIS ARTICA MALLQUI UNCP.
siguiente relación de Diluciones:
Relación I:
V1 . c1 = V2 . c2
Donde : V1 y c1 son volumen y Concentración inicial.
V2 y c2 son volumen y concentración final
Relación II:
V1 . N1 = V2 . N2
Donde : V1 y N1 son volumen y Normalidad inicial.
V2 y N2 son volumen y Normalidad final.
Se recomienda que cuando se transfiere cuantitativamente los
solutos al matraz aforado se utiliza una varilla de vidrio y se
arrastra el soluto con una pequeña porción del disolvente, y así
paulatinamente se va añadiendo a la fiola hasta aforar; se debe
disolver totalmente los solutos solidos antes de completar el
aforado.
BROMATOLOGÍA APLICADA VOL. I 48
LUIS ARTICA MALLQUI UNCP.
e.Valoración o Factorización
Todo análisis a nivel de laboratorio presenta un principio
químico fundamental la de realizarse en base a reacciones
químicas cuantitativas y cualitativas; esto explica que la
transformación de la sustancia inicial íntegramente en los
productos finales se realiza estequiométricamente cuando las
proporciones de las sustancias reaccionantes están
perfectamente definidas y son constantes.
Una forma clásica de presentar a una reacción estequiométrica
cuantitativa, es cuando se valora una solución de NaOH con
una solución de HCl bajo las mismas concentraciones y cuya
reacción es de la siguiente forma:
NaOH + HCl NaCl + H2O
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 51
LUIS ARTICA MALLQUI
De la reacción podemos mencionar que una Mol de NaOH
reacciona con una Mol de HCl, formándose una Mol de NaCl y
una Mol de H2O respectivamente. Este principio se emplea para
realizar las valoraciones o factorizaciones de todos las
soluciones o reactivos que se utilizan para el análisis de
alimentos y derivados.
Ott (1992), y Macarulla (1984) definen que una Valoración es
una operación la cual determina la concentración de una
solución problema en base a la medición del volumen de una
solución patrón que reacciona estequiométricamente con un
volumen conocido de la solución problema.
Es necesario recordarles que un equivalente de cualquier
sustancia reacciona siempre con un equivalente de otra. Por lo
tanto el punto de equivalencia es aquél en el que están
presentes cantidades iguales de los cuerpos reaccionantes,
mientras que el punto final es aquél en que se sabe que la
reacción ha concluido.
En lo referente a Indicadores podemos indicar que son
sustancias químicas que en el punto final de la reacción
experimentan un cambio brusco, manifestándose en el cambio
de coloración de la solución que se esta valorando.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 52
LUIS ARTICA MALLQUI
Para realizar una óptima valoración siempre se debe recordar
por norma el concepto de Equivalente químico, ya que en las
reacciones de neutralización (Valoración) y de óxido-reducción
se utiliza una cantidad de sustancia llamada Equivalente
Químico, que viene a ser la cantidad de sustancia que puede
liberar, adicionar, sustituir, o desplazar un átomo- gramo de
hidrógeno; como ejemplo citaremos lo siguiente:
Ejemplo 1: Una Mol de H2 SO4 puede liberar 2 átomos-gramo de H+
, por
lo tanto contiene dos equivalentes:
1 Mol H2SO4 = 2 equivalentes
1 Equivalente de H2SO4= M / 2 = 98/2 = 49 g.
Ejemplo 2 : Una Mol de NaOH puede captar 1 átomo-gramo de
H+
, por lo tanto contiene un equivalente:
1 Mol NaOH = 1 equivalente.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 53
LUIS ARTICA MALLQUI
1 Equivalente NaOH = M/1 = 40/1 = 40 g.
2.3.PROPIEDAD FUNDAMENTAL DE LOS
EQUIPOS DE MEDICIÓN
Considerando que los datos reproducibles que se obtienen deben
ser significativos, es necesario adoptar ciertas especificaciones que
presentan como propiedad fundamental los equipos y instrumentos
de medición en el laboratorio.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 54
LUIS ARTICA MALLQUI
Estas propiedades, están directamente relacionado con factores
extrínsecos (como es la temperatura, humedad, etc.,) e intrínsecos
(calibración, sensibilidad, precisión, etc.,) los cuales influyen sobre
los resultados, por lo que nace un término bastante conocido
denominado Error de medición, que viene a ser la diferencia entre
la medida aparente obtenida y la medida real.
Además se puede reconocer dos tipos de errores; el error absoluto,
que es la diferencia propiamente dicha, y el error relativo, que es el
cociente entre el error absoluto y la medida. Los errores se deben a
diferentes causas o factores, considerando estos factores, los
errores pueden ser Sistemáticos y accidentales (estadísticos); los
sistemáticos se deben a un instrumento de medida inadecuado o
mal uso del instrumento, estos errores no se detectan por repetición
de la medida, es inherente a la medición (constante).
Los errores accidentales o estadísticos, se deben a causas no
previsibles, y se pueden detectar y corregir repitiendo la medición.
Para evitar cualquier error de medición es necesario familiarizarnos
con las propiedades fundamentales de los equipos e instrumentos y
diferenciar la:
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 55
LUIS ARTICA MALLQUI
a.La Sensibilidad
Es la magnitud más pequeña que es capaz de medir el
instrumento. Si consideramos a nivel práctico, que una balanza
analítica tiene una sensibilidad de 0,1 miligramos, es decir, no
puede detectar variaciones de masa inferiores a 0,1 miligramos.
b.La Fiabilidad
Es la propiedad que hace que las medidas sea reproducibles,
es decir, que varias mediciones de una misma magnitud arrojen
el mismo resultado. Ahora a nivel práctico podemos indicar que
una balanza es fiable cuando en ella se pesa tres veces
consecutivas una misma masa debe dar en los tres casos el
mismo resultado.
c.La Precisión
Consiste en realizar las medidas con un error relativo
suficientemente pequeño. En la práctica, se observa que si una
balanza pesa 100 gramos con un error relativo de 1/1 000 es
más preciso que una balanza que pesa 10 miligramos con un
error relativo de 1/100.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 56
LUIS ARTICA MALLQUI
2.4. Análisis Cuantitativo
Trata de la identificación de substancias. Esta interesado en que
elementos o compuestos están presentes en una muestra.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 57
LUIS ARTICA MALLQUI
El análisis cuantitativo, se orienta a la determinación de que
cantidad de una sustancia en particular está presente en una
muestra. La substancia determinada, se llama componente
Deseado ó ANALITA; y puede constituir una pequeña o gran parte
de la muestra analizada.
Si la Analita es más del :
1% de la muestra = Componente principal
0,01% al 1% = Componente menor.
< al 0,01% = Componente vestigial
Una clasificación del análisis cuantitativo es:
Análisis macro = peso de muestra > de 0,1 g
Análisis Semi-micro = Peso de muestra de 10 a 100 mg.
Análisis Micro = peso de muestra de 1 a 10 mg.
Análisis ultramicro = peso de muestra en microgramos
(1 µg = 10 –6
g).
2.5.Análisis Cualitativo
Es el primer encuentro que tiene el estudiante, que trata de
identificar o separar cualitativamente, por precipitación, cambios de
color, sedimentación, etc., pueden emplearse técnicas
instrumentales como la espectroscopia de infrarrojo y resonancia
magnética Nuclear.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 58
LUIS ARTICA MALLQUI
2.6.Etapas En El Análisis Químico y Físico De
Alimentos.
a. Muestreo.
Seleccionar una muestra representativa del material que va a
ser analizado.
b. Preparación ó transformación de la
Analita En Una Forma Mensurable.
Conversión de la analita a una forma mensurable.
c. Medición
d. Cálculo e Interpretación de las
Mediciones.
La descripción de las etapas se indican a continuación:
Muestreo:deben ser muestras representativas según la naturaleza
del sistema alimenticio.
Sólido :Molienda o triturar(reducción de tamaño),
tamizar.
Líquidos:Si el líquido que va a ser analizado es
homogéneo, el procedimiento de muestreo es fácil; pero
si es heterogéneo es más difícil; líquido que circula en
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 59
LUIS ARTICA MALLQUI
un sistema de tuberías, se toma en diferentes puntos del
sistema.
Gas:Volumen, velocidad, duración del muestreo.
Transformación de la Analita En Una Forma Mensurable:
Antes de hacer la determinación física o química para medir la
cantidad de analita en una muestra, por lo general es necesario
resolver el problema de las “Interferencias”. Las interferencias
deben ser inmovilizados o eliminados mediante la alteración de su
naturaleza química o física.
Medición:
- El análisis se realizará con la brevedad posible.
- Se realizará con medios químicos, físicos ó biológicos.
La técnica que se utiliza en el laboratorio ha llevado a la
clasificación de los métodos cuantitativos en las
subdivisiones:
a. Análisis Volumétrico:
Requiere la medición del volumen de una solución de
concentración conocida, que se necesita en la reacción
con la analita.
b. Análisis Gravimetrico.
Medición del peso o masa de la analita.
c. Análisis Instrumental.
Uso de instrumento especial en la etapa de medición. En
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 60
LUIS ARTICA MALLQUI
realidad, los instrumentos se pueden emplear en cualquier
de los pasos del análisis, y en forma de rigor, las buretas y
las balanzas analíticas son instrumentos.
Otros métodos instrumentales: espectroscopía de
absorción y de emisión; potenciometría, polarografía,
culombimetría, conductimetría, polarimetría,
refractometría, Espectrometría de masa, etc.,.
Los análisis se realizan en laboratorios oficiales, sobre la
base de métodos oficiales.
Cálculo e Interpretación de las Mediciones
El proceso final en un análisis es el cálculo del porcentaje de la
analita en la muestra.
La interpretación de los resultados obtenidos de los métodos
analíticos no siempre es sencilla, debido a que se pueden cometer
errores con cualquier medición; el ingeniero en alimentos debe
considerar esta posibilidad al interpretar sus resultados.
Los métodos estadísticos se emplean comúnmente y son muy
útiles para expresar el significado de los datos analíticos.
- Presentación de resultados
- Un informe técnico.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 61
LUIS ARTICA MALLQUI
2.7. Los Errores y El Tratamiento de Datos
La estadística y la teoría de la probabilidad poseen una estructura
lógica y rigurosa para el tratamiento de datos.
a.Errores
Se refiere a la diferencia numérica entre el valor medido y el
valor real. El valor real de cualquier cantidad es en realidad una
abstracción filosófica, algo que el hombre no está destinado a
conocer.
2.8.Muestreo En El Análisis de Alimentos.
Es la toma de una alicuota o porción de muestra del material
problema a evaluar, bajo ciertas normas establecidas. La toma de
muestras debe realizarse mediante un acta formalizada, por
triplicado ante el titular de la empresa o establecimiento sujeto a
inspección(Madrid, 1996). Una muestra puede definirse como “una
porción o artículo que indica la calidad de todo lo que ha sido
tomado”. Como quiera que la mayoría de alimentos que hay que
muestrear no son homogéneos en su confección o en una
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 62
LUIS ARTICA MALLQUI
presunta adulteración, no suele ser posible tomar una muestra
perfecta.
El objetivo del muestreo es seleccionar una porción o un número
de recipientes o de unidades de un producto que sea altamente
representativo de una partida o lote de alimentos del que se ha
tomado.
Un lote puede ser una porción de una partida de alimentos
enviados o almacenados que lleve la misma codificación, sea un
producto distinto del resto de la partida o sea diferente en cualquier
otra forma. El tamaño de la muestra debe ser suficiente para
permitir su análisis de laboratorio, o su repetición su fuera
necesaria.
Es importante sincronizar las prioridades de inspección y de
laboratorio con el fin de garantizar que las muestras de una
inspección se analicen con prontitud.
A. CLASES DE TOMA DE MUESTRAS
Toma de muestras selectiva
Por lo general, las muestras se toman para ilustrar o
documentar condiciones insatisfactorias observadas por el
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 63
LUIS ARTICA MALLQUI
inspector, o para permitir el análisis en laboratorio de un
alimento posiblemente adulterado. La tomo de muestras se
puede realizar en cualquier punto de la cadena de producción,
durante una inspección, en el almacén, en el establecimiento
mayorista o en el mercado o establecimiento minorista.
Las muestras que se toman como consecuencia de
reclamaciones de clientes, observaciones de la inspección o
cualquier otro motivo, se suelen “seleccionar”, es decir, se
eligen de forma que ofrezcan la mejor oportunidad de
confirmar determinados hechos conocidos.
Toma de muestras objetiva
La toma de muestras objetiva es bastante directa, ya que
suele haber indicios u otra información que conduzca a las
unidades de alimentos seleccionados para la muestra.
Por su parte, la toma de muestras objetiva puede resultar
complicada, ya que es difícil proceder con objetividad cuando
se trata de determinar la auténtica calidad de un lote
determinado de alimentos no homogéneos. El inspector se
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 64
LUIS ARTICA MALLQUI
preguntará siempre si la muestra recogida fue demasiado
pequeña, o excesivamente grande, y si la selección se hizo
realmente al azar.
2.8.1. Características de Muestreo
La toma de muestra debe realizarse por triplicado
homogéneamente bajo las siguientes recomendaciones:
a. Acondicionados
b. Precintados
c. Lacrados
d. Etiquetados
Además, debe indicarse los siguientes datos:
e. Su identidad de la muestra
f. Su contenido
g. Su código
h. Su fecha de muestreo.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 65
LUIS ARTICA MALLQUI
2.8.2.Deposito de la Muestra
El depósito de las unidades Muestreadas se hará de la
siguiente forma:
c.Fabricantes (Empresa).
01 muestra quedará en poder del fabricante bajo deposito,
en unión de una copia del acta con la obligación de
conservarla en perfecto estado para su posterior
utilización en prueba contradictoria si es necesario.
Las otras dos muestras quedarán en poder de la
inspección.
d.Distribuidores del Producto.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 66
LUIS ARTICA MALLQUI
CAPITULO III
3.1.PROTOCOLOS BROMATOLÓGICOS
GENERALES EN LOS ALIMENTOS
La evaluaciuón básica de los sistemas alimenticios como materias
primas o Productos Alimentarios Intermediarios(PAI), no sólo
comprende la determinación de sus principales analitas o
principios inmediatos(proteínas, grasas, carbohidratos, cenizas),
sino también se tiene que evaluar la determinación de magnitudes
físicas generales. Los métodos aplicables son los químicos y los
físico-químicos, electrométricos, gravimétricos, volumétricos,
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 67
LUIS ARTICA MALLQUI
instrumentales.
Dentro de las evaluaciones generales de los sistemas alimenticios
se encuentran parámetros reproducibles como la determinación de
la densidad o gravedad específica, contenido de agua, materia
seca, ceniza, fibra bruta y fibra dietária.
3.2.Densidad
La densidad o masa específica de una sustancia se define como
la masa de su unidad de volumen(g/mL) y se determina por
pesada. La magnitud de la densidad depende de la temperatura
y de la presión. Aunque la temperatura debe especificarse junto
con la densidad, la presión no es necesaria en el caso de
líquidos y sólidos porque son prácticamente incompresibles.
para que la determinación sea precisa habrá de corregirse el
error debido a la presión del aire o en caso contrario la pesada
deberá realizarse en condiciones de vacío(Matissek, etal, 1998).
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 68
LUIS ARTICA MALLQUI
Aplicaciones
Bebidas
Zumos de frutas
Vino, cerveza, bebidas alcohólicas, analcohólicas
Procedimiento
Aparatos y materiales
- Baño maría con termostato
- Picnómetro de 50 mL con su tapón correspondiente
- Embudo picnométrico
- Capilares de vidrio
- Rollos de papel de filtro
Reactivos
- Agua destilada desgasificada
- Acido cromosulfúrico(para limpiar el picnómetro)
Preparación de la Muestra
Los zumos turbios debe agitarse enérgicamente, de forma que el
sedimento existente se reparta de manera homogenea. En el caso
de bebidas carbonatadas, como por ejemplo la cerveza, se añaden
300 a 500 mL de muestra a un matraz de fondo plano de 1 000mL
que se cierra y se agita durante el tiempo necesario para eliminar
la sobrepresión, lo que se realiza abriéndolo de vez en cuando. A
continuación, la muestra se pasa por un filtro de pliegues
Determinación.
a. Masa del Picnómetro Vacío
3.3. Protocolo para la determinación Picnométrica de la
Densidad Relativa en Sistemas Alimentos
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 69
LUIS ARTICA MALLQUI
El picnómetro limpiado con ácido cromosulfúrico se lava varias
veces con agua destilada y se seca cuidadosamente a
temperatura ambiente(Si se calienta mucho, el volumen del
picnómetro se verá alterado, lo que debe evitarse a toda
costa).
b. Después de poner el tapón marcado se deja reposar durante
15 minutos en la caja de la balanza y después se pesa con
cuatro cifras decimales. Hay que realizar la medida de tres
determinaciones.
c. Masa del picnómetro lleno de agua
c.1. Se llena el mismo picnómetro un poco por encima del
enrrase con agua destilada recién hervida, se tapa y se
deja durante 30 minutos en un baño maría de agua a
20°C.
c.2. Con ayuda de un capilar se enrasa exactamente, es
decir, se hace coincidir el borde inferior del menisco o
superficie curvada del líquido con el enrase.
c.3. A continuación, la parte vacía del picnómetro se seca de
cualquier resto de agua con papel filtro, se coloca el
tapón y después de sacarlo del baño maría se seca bien
con un paño suave que no deje pelusas, se coloca en la
caja de la balanza durante 30 minutos y se pesa con una
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 70
LUIS ARTICA MALLQUI
precisión de cuatro cifras decimales. Debe realizarse la
medida de tres determinaciones.
d. Masa del picnómetro lleno de la muestra
d.1. El picnómetro lleno(ver c) se vacía y se lava
cuidadosamente varias veces con pequeñas fracciones
de la muestra problema(de 5 a 10 mL). Después de
llenarlo con la sustancia problema ligeramente por
encima del enrase, se sigue lo indicado en c.
Cálculos
La densidad relativa d 20/20 de la muestra se calcula en base a la
siguiente relación:
d 20/20 = m3 - m1 / m2 - m1
Donde: m1 Masa en g de picnómetro vacío
m2 Masa en g del picnómetro lleno de agua a 20 1C
m3 Masa en g del picnómetro lleno de la muestra
problema a 20ºC.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 71
LUIS ARTICA MALLQUI
3.4.Determinación de la Materia Seca
(Sustancia Seca)
Se entiende por materia seca o sustancia seca de un sistema
alimenticio a la suma de todos ls componentes no volátiles del
mismo. Se incluye aquí fundamentalmente lípidos, carbohidratos,
proteínas y cenizas. La materia seca o sustancia seca se
determina generalmente por secado de la muestra y pesada del
residuo o por medida de la refracción o de la densidad.
La diferencia entre el contenido en sustancia seca y el 100% se
denomina, no muy correctamente, contenido en agua. La
determinación de la pérdida de humedad por medio de la elevación
de la temperatura, eventualmente con utilización complementaria
de vacío, es el método más antiguo para obtener el contenido en
sustancia seca o el "contenido en agua" de un alimento(Matissek,
Schnepel y Steiner; 1998).
No obstante, antes de utilizar este proce dimiento deben estimarse
las posibilidades de error y tener en cuenta los casos en que se
puede aplicar. Por ejemplo, las sustancias volátiles como el ácido
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 72
LUIS ARTICA MALLQUI
carbónico, los alcoholes, los aceites etéreos conducen a valores
de contenido en agua más elevados. Ademas más, el agua se
forma también a través de reacciones químicas(por ej.., las
reacciones de Maillard), que se determinará a la vez y que
conducirá a un contenido acuoso mayor.. Este método sólo será
aplicable poor tanto en el caso de alimentos que no sufran ninguna
transformación duarnte el secado térmico. Por ello, es más exacto
hablar de "residuo seco", "Sustancia seca" , "peso seco" o "Materia
seca"(Steiner, etal., 1998).
3.5. Protocolo para la determinación
Gravimétrica de la Materia Seca o Sustancia
Seca.
Aplicaciones
- Alimentos en General
Fundamento
La muestra se seca directamente, o tras triturarla con arena de mar,
en una estufa desecadora normalmente a 103 " 2 1C de
temperatura(si se utiliza vacío basta con unos 70 1C) hasta pesada
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 73
LUIS ARTICA MALLQUI
constante, calculándose el residuo poor diferencia de peso.
Procedimiento
Aparatos y Materiales
- Estufa desecadora (con vacío)
- Pesasustancias hasta de 30 mm de altura, 50 mm de diámetro,
con tapa
- Cápsulas de vidrio/porcelana/aluminio de 60-80 mm de diámetro
- Arena de mar lavada y calcinada(si es necesario)
Determinación
a. Secado directo
a.1. La desecación variará dependiendo del tipo de material
alimenticio y del tamaño de los fragmentos(entre 3 a 6
horas), aunque en cualquier caso debe continuarse
hasta pesada constante.
a.2. Por lo general, dependiendo de la pérdida de peso
esperada(o del contenido en agua) y de la
homogeneidad del material, se pesan exactamente de 1
a 10 g de muestra en un vidrio de pesada y se secan
durante 3 horas en la estufa a 103º ± 2ºC.
En el caso de los cereales y productos de molienda(por
ej., harinas) se pesan exactamente unos 5 g de muestra
y se desecan durante 1,5 horas a 130 1C. Se dejan
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 74
LUIS ARTICA MALLQUI
enfriar en una campana desecadora y se determina por
pesada la pérdida por desecación.
b. Pesada a vacío(Desecación al vacío)
Los alimentos ricos en azúcares y grasa(por ej., queso, miel)
para evitar reacciones secundarias causadas por el
calentamiento por encima de 100 1C, se secan a presión
reducida(al vacío) y a temperaturas más bajas(inferiores 70
1C) en una estufa a la que se aplica vacío. Para que la muestra
no se compacte se mezcla con arena de mar.
c. Secado tras trituración con arena de mar(Método de la arena
de mar) En el caso de muestras difíciles de secar, en cuya
superficie se formauna costra(ej., productos cárnicos, jarabes,
productos lácteos, quesoo y similares), es necesario triturar el
material con arena de mar para descompactarlo.
Para ello, se llena el vidrio de pesada con unos 10 a 30 g de
arena de mar y una pequeña varilla de vidrio, se seca en una
estufa a 103 " 2 1C y finalmente se enfría en un desecador y se
pesa(peso en vacío). Después de pesar exactamente 1-10 g de
muestra, ésta se mezcla homogeneamente con ayuda de la
varilla de vidrio. Hay que tener cuidado de que no salte ningún
gránulo. Tras su secado hasta pesada constante(unas 2 a 3
horas), se enfría en la campana desecadora y se pesa.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 75
LUIS ARTICA MALLQUI
Cálculos
La expresión del contenido de sustancia seca o materia seca(SS)
expresado como porcentaje se calcula en base a la siguiente
ecuación:
% SS = ( m3 - m1 / m2 - m1 ) . 100
Donde: m1 Peso en vacío del vidrio o pesasustancias(en
caso necesario con arena de mar seca y varilla
de vidrio)
m2 Peso de la cápsula o pesasustancias(en caso
necesario con arena de mar seca y varilla de
vidrio) más la muestra antes del secado en g.
m3 Masa de la cápsula o pesasustancias(en caso
necesario con arena de mar seca y varilla de
vidrio) en g más la muestra después del secado.
(m2 - m1 ) = Peso de la muestra
El "contenido de agua", expresado como porcentaje, H2O de la
muestra se calcula según la ecuación siguiente:
% H2O = 100% - % SS
3.5.1. Protocolo para Determinación
Refractométrica de la Sustancia seca o
Materia Seca.
Aplicaciones
- Miel
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 76
LUIS ARTICA MALLQUI
- Crema de azúcar invertido("miel artificial")
El índice de refracción n se puede utilizar para la
identificación de sustancias líquidas puras y para la
caracterización de muestras alimenticias. Se determina por
medio de un refractómetro.
Fundamento
El índice de refracción de una muestra alimenticia líquida o
en su caso fundida se mide a 40 ºC y a partir de allí se
calcula el porcentaje de sustancia seca o materia seca.
Procedimiento
Aparatos y Materiales
- Refractómetro de Abbé con termostato
- Pesasustancias
- Varilla de vidrio
Preparación de la Muestra
La miel candi debe fluidificarse antes de la medida. Para ello
se coloca en un pesasustancias cerrado dentro de una
estufa a 50ºC y se enfría antes de abrir.
Determinación
Se coloca cuidadosamente una gota de muestra, fluidificada
en su caso, con la varilla de vidrio formando una fina capa en
el par de prismas abatible del refractómetro calentando a
40ºC y se cierra éste rápidamente para disminuir la
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 77
LUIS ARTICA MALLQUI
evaporación del agua. Al cabo de un minuto a 40 ºC se mide
el ángulo límite y se lee el ángulo de refracción n. (Nota: La
calibración del refractómetro se lleva a cabo con agua
destilada a 40 ºC( n40
D = 1,3307).
Calculos
Para calcular la sustancia seca SS o materia seca resultan
válidas las siguientes fórmulas empíricas:
a) Para la Miel pura de abeja
% SS = 78,0 + 390,7 . (n - 1,4768)
b) Para la "Miel Artificial", más exactamente "crema de
azúcar invertido"
% SS = 78,0 + 378,0 . (n - 1,4756)
3.6.Determinación de Cenizas
El concepto de residuo de incineración o de cenizas se refiere al
residuo que queda tras la combustión(incineración) completa de
los componentes orgánicos de un alimento en unas condiciones
determinadas.. Una vez que se eliminan otras posibles impurezas
y partículas de carbono procedentes de una combustión
incompleta, este residuo se corresponde con el contenido en
minerales del sistema alimenticio(Matissek, Schnepel, y Steiner;
1998).
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 78
LUIS ARTICA MALLQUI
La determinación de las cenizas proporciona un índice que se
utiliza junto con otros para caracterizar y evaluar la calidad del
sistema alimenticio. Así pr ejemplo, permite distinguir, entre otros,
los distintos tipos de harina de cereales según su contenido en
cenizas. Otra aplicación es el análisis de loos zumos de frutas a
través de la determinación de la alcalinidad de las cenizas, en la
que se determinan por separado los componentes alcalinos de las
cenizas, tales como carbonatos y óxidos.
Se diferencia la incineración seca(combustión) de la
húmeda(mineralización).. Para la determinación de metales
volátiles(por ej., mercurio) o de determinados no metales la más
adecuada es la incineración seca. La incineración húmeda se lleva
a cabo con una mezcla ácida o se realiza la mineralización por
fusión con álcali.
En la Incineración seca la temperatura debe ser de unos 550 ºC,
porque al sobrepasarse loos 600 ºC se producen pérdidas de
cloruros alcalinos(como cloruro de sodio). Excepción, las ceniz<as
de harinas se obtienen a temperaturas superiores(900 ºC).
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 79
LUIS ARTICA MALLQUI
Aplicaciones
- Alimentos en general
Introducción
El residuo por incineración directa de una muestra de
alimento puede contener, además de las sustancias
minerales del alimento, partículas de carbón procedentes de
una combustión incompleta, o también impurezas del
alimento(arena, arcilla); por ello este residuo se denomina
también « ceniza bruta», o mejor «residuo de incineración».
La «ceniza límpia» es la diferencia entre la ceniza bruta y el
contenido en carbón e impurezas.
Fundamento
Se calcina/incinera la muestra(en caso necesario tras su
desecación) a 550ºC en la mufla y se calcula el residuo de
incineración por diferencia de peso.
Procedimiento
- Horno Mufla
- Evaporador de superficie(lámpara infrarroja)
3.6.1. DETERMINACIÓN E INVESTIGACIÓN DEL RESIDUO DE
INCINERACIÓN POR INCINERACIÓN DIRECTA(Contenido
de Cenizas)
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 80
LUIS ARTICA MALLQUI
- Crisol de platino o de cuarzo
- Varilla de vidrio
- Papel de filtro libre de cenizas
Reactivos
- Disolución de peróxido de hidrógeno al 30%.
Determinación
a. Se calcina el crisol vacío y limpio en el mechero Bunsen,
se enfría al aire, se coloca en un desecador y finalmente
se pesa.
b. La pesada de la muestra se realiza de acuerdo con la
cantidad de ceniza esperada: ésta deberá ser al menos
de 0,5g.
Las muestras sólidas se utilizan directamente, pero las
muestras líquidas y pastosas deben secarse antes en el
evaporador de superficie. Debe tenerse cuidado de que la
formación de gas o de vapor de agua no arrastre ninguna
partícula del crisol. Para disgregar las costras se emplea una
varilla de vidrio, que se limpiará a continuación de las
posibles partículas que hayan quedado adheridas con
trocitos de papel de filtro libre de cenizas. Estos trocitos de
papel se añaden al crisol y se incineran junto con la muestra.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 81
LUIS ARTICA MALLQUI
La muestra(desecada en su caso) se calienta moviendo el
crisol cuidadosamente sobre la llama opaca del mechero
Bunsen hasta que ya no se produzca hinchamiento. A
continuación, se coloca el crisol en el horno mufla a 550 ±
25ºC y se incinera durante 1-3 h hasta pesada constante, es
decir, hasta que la ceniza aparezca blanca.
Si la ceniza no se vuelve blanca, se enfría el crisol y se
humedece con unas gotas de agua destilada o de disolución
de peróxido de hidrógeno y las porciones carbonizadas se
aplastan con la varilla de vidrio. Esta se limpia como se
explicó más arriba.
A continuación se repiten la desecación y la incineración.
Finalmente se deja enfriar el crisol colocándolo sobre una
superficie refractária y se pesa después de un enfriamiento
en el desecador.
Cálculos
El Porcentaje de residuo de incineración(contenido de
cenizas)C se calcula como sigue:
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 82
LUIS ARTICA MALLQUI
% C = ( m2 - m1 / P ) . 100
En donde m1 Masa en g del crisol vacío
m2 Masa en g del crisol con la muestra tras la
incineración.
P Peso de la muestra en g.
3.7.Determinación del Tipo de Harina de Cereal
Aplicaciones
- Harinas de cereal, cereales
Introducción
En los cereales, la mayor parte de los minerales se encuentran en
la cubierta del grano(un 50% frente al 0,4% del endospermo).
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 83
LUIS ARTICA MALLQUI
Como el residuo de incineración(contenido en cenizas) representa
una medida del contenido en cáscara de la harina y en virtud de
ello de su grado de extracción, se utilizan para tipificar las harinas
de cereales. Cuanto mayor sea la extracción, mayor será la
cantidad de cáscara que se encuentre en la harina. El tipo de
harina se obtiene a partir del porcentaje de residuo de incineración
referido a sustancia seca multiplicado por un factor de
1.000(Matissek, Schnepel y Steiner, 1998).
Fundamento
La harina se carboniza primero en el mechero de Bunsen y a
continuación se incinera a 900ºC. El residuo de incineración se
obtiene por diferencia de pesada y se refiere a sustancia
seca(obtenida según 3.5).
Procedimiento
Aparatos y Materiales
- Ver 3.6.1.
Reactivos
- Etanol 95(vol)
- Nitrato amónico
Determinación
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 84
LUIS ARTICA MALLQUI
a. El crisol vacío y limpio se calcina a la llama del mechero
Bunsen, se enfría al aire y se coloca en un desacador para su
enfriamiento definitivo, pesándose a continuación con cuatro
cifras decimales.
b. Se pesan hasta la cuarta cifra decimal unos 5 g de
harina(molienda) cuidadosamente mezclada, se humedecen
con 1-2 mL de etanol(para evitar que se levante polvo, con la
consiguiente pérdida de sustancias) y se coloca en la boca del
horno mufla calentando a 900±10ºC. Una vez que la harina se
ha quemado o carbonizado con una llama viva, el matraz se
empuja dentro de la mufla y se calcina durante 60-90min.
c. La incineración se considera terminada cuando el residuo
aparezca completamente blanco. Si todavía se pueden
apreciar partículas negras de sustancias sin incinerar, el
residuo se humedece y se procede como se describe en en
3.6.1. En lugar de ello, se puede añadir al residuo una vez
enfriado un poco de nitrato amónico(que se descompone
térmicamente) y se sigue incinerando.
d. Una vez terminada la incineración, se deja enfriar el crisol
colocádolo en una superficie que no se queme y, tras su
enfriamiento definitivo en el desecador, se pesa hasta la cuarta
cifra decimal. La pesada debe realizarse lo más rápidamente
posible debido a la higroscopisidad del residuo.
Cálculos
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 85
LUIS ARTICA MALLQUI
El residuo de incineración(contenido en cenizas) de la harina
secada al aire se calcula con la ecuación que se indica bajo el
epígrafe 3.6.1.
El tipo de harina H se calcula a partir del residuo de incineración C
de acuerdo con la siguiente igualdad y se refiere a sustancia seca:
C . 100
H = ________________. 1.000
( 100 - A)
Siendo C % de residuo de incineración
A % en agua de la muestra
3.8.CONTENIDO EN FIBRA BRUTA Y
DIETÉTICA
Se denomina fibra dietética a aquellos componentes de hojas,
frutos o raices dificiles o imposibles de utilizar por el organismo
humano. Se trata sobre todo de compuestos vegetales, es decir,
compuestos poliméricos fibrosos(celulosas, hemicelulosas,
pectinas) y ligninas(polimeros de fenilpropano), y también
CALCULOS
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 86
LUIS ARTICA MALLQUI
lípidos(ceras, cutina) y en parte elementos traza en compuestos no
absorbibles(Matissek, et al., 1998).
Puesto que el organismo humano carece de un sistema enzimático
que degrade estos polímeros, la fibra dietética aparece inalterada
en el intestino grueso(colon) y ejerce una acción reguladora del
peristaltismo y por lo tanto de reabsorción de otros nutrientes que
sí son absorbibles.
Gracias a sus propiedades, la fibra dietética afecta también
favorablemente al metabolismo de los ácidos biliares porque se
une a las sales biliares aumentando así su eliminación. Al contrario
que la fibra dietética, la fibra bruta es un término que describe
exclusivamente una magnitud analítica.
3.8.1. Determinación de la Fibra Bruta Según
Scharrer - Kürschner
Aplicaciones
- Alimentos de origen vegetal
Introducción
El término de «fibra bruta»se aplica al residuo libre de
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 87
LUIS ARTICA MALLQUI
cenizas que queda tras un determinado tratamiento de un
producto vegetal. En dicho tratamiento se utilizan lejías y
ácidos o también mezclas de estos últimos. La
composición de la fibra bruta depende sobre todo de la
capacidad del compuesto utilizado en el tratamiento para
disolver cada componente de la pared celular(celulosa,
pentosanos, pectinas, lignina). En el procedimiento de
Scharrer y Krschner que describimos aquí, la lignina se
solubiliza por oxidación o nitración, de manera que se
obtiene por lo general una fibra bruta sin lignina y con
pentosanos. Si se utilizara un tratamiento diferente, la
composición del residuo sería distinto. Por lo general, el
contenido de fibra bruta no constituye un índice absoluto;
sirve más bien como indicación de la cantidad de
compuestos no aprovechables por el organismo que
existe en un alimento, por ejemplo comprobar el
porcentaje de cáscaras en derivados de cereales y en el
cacao.
En la práctica el contenido de fibra bruta se utiliza por
tanto fundamentalmente para evaluaciones de la
calidad(Matissek, Schnepel y Steiner; 1998).
Fundamento
El material a investigar una vez triturado y en su caso
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 88
LUIS ARTICA MALLQUI
desengrasado, se trata con una mezcla ácida, se filtra, el
residuo se lava con etanol y éter, se seca y se pesa.
Después de incinerado, se resta el contenido en cenizas
del peso que se había obtenido.
Procedimiento
Aparatos y Materiales
- ver 3.6.1.; además:
- Refrigerante a reflujo con esmerilado.
- Probeta de 100 mL
- Matraz de fondo plano de 250 mL con esmerilado
- Embudo de vidrio y papel de filtro libre de cenizas o
crisol fritado(placa filtrante de vidrio o de cuarzo de
50mL), kitasato y bomba de vacío.
- Pesasustancias
- Papel indicador de pH
Reactivos
- Mezcla ácida: Disolver 25 g de ácido
tricloroacético en 500 mL de ácido acético 70%,
mezclar con 124 mL de ácido nítrico 65% y
completar hasta 1 L con ácido acético 70%
- Etanol 96%(vol)
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 89
LUIS ARTICA MALLQUI
Eter etílico(intervalo de ebullición 34-35ºC)
Eter de petróleo(intervalo de ebullición 30-60ºC)
Determinación
a. Tratamiento Previo
Si la muestra tiene mucha grasa deberá
desengrasarse antes de pesarla lavándola 2-3
veces con éter de petróleo, que se elimina
decantando; el resto del disolvente se deja
evaporar.
b. Tratamiento
Pesada: depende del contenido de fibra bruta (3-
20g). La muestra se pesa exactamente, se pesa
al matraz de fondo plano y se mezcla con 80 mL
de mezcla ácida(primero se añaden sólo 60 mL,
se agita enérgicamente el matraz y se lava la
pared interior con los 20 mL restantes).
Se calienta a reflujo durante 30 min y a
continuación se enfría al aire primero después
bajo el agua corriente.
El papel libre de cenizas se seca durante 1 h a
103±2ºC, se enfría en el desecador y se pesa
exactamente. Dependiendo de la muestra, el
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 90
LUIS ARTICA MALLQUI
contenido del matraz se pasa por el papel de
filtro previamente pesado o por un crisol filtrante
con ayuda de un kitasato y de vacío.
El matraz se enjuaga con agua caliente, con la
que deberá lavarse el papel de filtro libre de
ácidos(Control con papel pH); el Kitasato se
vacía varias veces, porque si no el ácido acético
muy volátil reduce el vacío y retarda el lavado.
A continuación, se lava el residuo tres veces con
10 mL de etanol y dos veces con 10 mL de éter
etílico. El papel de filtro con el residuo se pasa a
un crisol previamente pesado y se seca durante
1 h a 103± 2ºC, se enfría en el desecador y se
pesa exactamente.
c. Incineración
Después de una incineración preliminar, el papel
de filtro junto con el residuo se incinera durante 1
aprox. A 700ºC; finalmente se pesan las
cenizas(ver. 3.6.1.)
Cálculos
El porcentaje de fibra bruta F se calcula en
función a la siguiente relación:
( m1 - mf ) - m2
%F = ------------------------ . 100
M
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 91
LUIS ARTICA MALLQUI
Donde:
m1 Peso tras el tratamiento, es decir, residuo + papel de
filtro en g.
mf Peso del papel de filtro seco en g(si se lleva a cabo en
ensayo en blanco de la nota, se utiliza como mf el
peso del papel de filtro tratado con los reactivos).
m2 Peso después de la incineración, es decir, peso de las
cenizas en g.
M Peso de la muestra en g.
El peso de fibra bruta(m1 - mf) debe estar entre 60 - 200 mg; en
caso contrario la determinación deberá repetirse con una cantidad
de muestra distinta más adecuada.
3.8.2. Determinación de la Fibra Dietética
Orgánica Insoluble
Aplicaciones
- Alimentos a base de Cereales.
Introducción
La fibra dietética orgánica insoluble corresponde al
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 92
LUIS ARTICA MALLQUI
residuo libre de cenizas que queda después de un
tratamiento con una disolución detergente neutra y α-
amilasa. En cuanto el procedimiento, es análogo a la
determinación descrita en 3.8.1. para la fibra bruta. No
obstante, como las condiciones de trabajo son otras, el
residuo no tendrá la misma composición. En el
procedimiento que indicamos aquí no se obtiene fibra
dietética soluble como pectina, etc., sino sobre todo
celulosa, hemicelulosa insolubles y lignina.
Fundamento
La muestra se desmenuza, se desengrasa si es
necesario, se trata con disolución detergente neutra y
α-amilasa y se filtra. El residuo se seca y se incinera a
500 - 520ºC. El contenido en fibras dietética insoluble
se obtiene por diferencia de pesada antes y después
de la incineración.
Procedimiento
Aparatos y materiales
- Ver 3.8.1.
- Probeta de 1000 mL.
- Pipeta aforada de 10 mL.
Reactivos
- Disolución detergente Neutra
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 93
LUIS ARTICA MALLQUI
- Disolución parcial A: se disuelven 6,8g de
tetraborato disódico 10-hidratado y 4,6g de
hidrógenofosfato disódico(anhidro) con 222mL de
agua destilada caliente y se mezcla con 19,7 g de
EDTA(sal disódica dihidratada del ácido
etilendiamino tetraacético).
- Disolución Parcial B: se disuelven 30,0g de
dodecilhidrogenosulfato sódico en 778 mL de agua
destilada.
Las disoluciones A y B se mezclan cuidadosamente
con 10 mL de monoetiléter. Al cabo de 24 h se
controla el pH y en caso necesario se ajusta a 6,9 -
7,1. (si se conservan a temperatura inferior a 20ºC,
el detergente precipita; se redisuelve calentando a
60ºC aprox.).
- Disolución de amilasa.
Se disuelven 2 g de α-amilasa(de Bacillus subtilis, de
50 a 100 U/mg) en 90 mL de agua destilada, se filtra
por un papel de filtro y se mezcla con 10 mL de
monoetiléter del etilenglicol(se conserva unas 4
semanas a 4ºC).
- Disolución de Yodo 0,05 mol/L
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 94
LUIS ARTICA MALLQUI
- Acetona
- Eter de petróleo(intervalo de ebullición
Determinación
a) Tratamiento Previo
Ver 3.8.1.
b) Tratamiento
Se colocan en el matraz de fondo plano 0,5 g de
la muestra triturada y se mezclan con 50 mL de
disolución detergente, calentándose a reflujo
durante 30 min. A continuación, las paredes del
matraz se lavan con otros 50 mL de detergente
neutro para limpiar los posibles fragmentos de
fibra, utilizándose si es necesario una varilla
provista de una goma, y después de añadir 2 mL
de la disolución de amilasa se calienta a reflujo
durante 60 min.
Dependiendo del tipo de muestra, el contenido
del matraz se pasa por un papel de filtro libre de
cenizas previamente desecado y pesado o a
través de un crisol fritado desecado y
exactamente pesado.
El residuo se lava con agua destilada caliente
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 95
LUIS ARTICA MALLQUI
hasta que el filtrado ya no haga espuma.
Después se deja reposar el residuo con 30 mL
de agua destilada a 80ºC y 2 mL de disolución
de amilasa(el tubo de salida del embudo se
cierra con un tapón) y finalmente se deja salir el
líquido. Si al añadir 1-2 gotas de la disolución de
yodo aparece sobre el residuo una coloración
azul violeta, la degradación del almidón todavía
no será completa: en este caso habrá que repetir
el experimento. El residuo se lava dos veces con
30 mL. de agua destilada hirviendo y tres con 15
mL de acetona. El crisol fritado o el papel de
filtro con el residuo se secan durante la noche a
103± 2ºC en un crisol previamente pesado, se
enfrían en un desecador hasta temperatura
ambiente y finalmente se pesan.
c. Incineración.
Después de una incineración preliminar del
residuo seco se lleva a cabo la incineración a
500 - 520ºC; a continuación se pesan las
cenizas(3.6.1.).
Calculos
El porcentaje de fibra dietética orgánica insoluble F se
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 96
LUIS ARTICA MALLQUI
calcula con la siguiente relación:
( m1 - m2 )
%F = ----------------- . 100
M
Donde:
m1 Peso tras el tratamiento, es decir del residuo en el
papel de filtro o crisol fritado tras el secado.
m2 Peso después de la incineración, es decir, del residuo
en g
M Peso de la muestra en g
3.9. Métodos de Determinación del Contenido de
Grasa de los Alimentos.
La determinación cuantitativa del contenido graso de un alimento
se realiza por lo general por extracción con un disolvente lipófilo.
La grasa libre se determina por extracción directa, mientras que la
denominada grasa total incluye tanto la «grasa libre» como la
ligada y las sustancias acompañantes solubles en disolventes
orgánicos debido al tratamiento ácido empleado.
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 97
LUIS ARTICA MALLQUI
3.9.1. Extracción Directa: Método Soxhlet
Aplicaciones
-Alimentos en general, aunque conexcepción de
aquéllos en los que la grasa está cubierta(por ej. En
los productos lácteos)
- Obtención de la fracción de grasa libre de la muestra
para su posterior caracterización
Fundamento
La muestra anhidra se extrae con éter dietílico y con
éter de petróleo y después se determina
gravimétricamente el extracto seco, del que se habrán
eliminado los disolventes.
Procedimiento
Aparatos y Materiales
- Baño de agua(hasta punto de ebullición)
- Dispositivo de extracción de Soxhlet Con matraz de
250 mL y refrigerante de reflujo
- Cartuchos de extracción
- Guata(libre de grasa)
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 98
LUIS ARTICA MALLQUI
- Perlas de vidrio
Reactivos
- Éter dietílico: intervalo de ebullición 34-35 ºC, libre de
peróxidos
- Éter de petróleo : Intervalo de ebullición 40-60 ºC
- Sulfato sódico anhidro
Determinación
a. Se pesan unos 5-10 g de muestra homogeneizada
con una precisión ± 1 mg, y en su caso desecada,
en un cartucho de extracción libre de grasa y se
coloca éste, tras ser cerrado con guata, en la pieza
media del dispositivo de extracción de Soxhlet.
El matraz de fondo plano secado a 103 ± 2 ºC,
exactamente pesado, provisto de las perlas de
vidrio se llena con una cantidad suficiente de
disolvente y se acopla al dispositivo. Durante la
extracción, que tiene lugar al baño maría y dura 4-6
horas, debe vaciarse regularmente el espacio de
extracción, es decir, la pieza media del dispositivo,
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 99
LUIS ARTICA MALLQUI
a través del conducto ascendente(unos 20-30
vaciados).
b. Al finalizar la extracción se sigue destilando el
disolvente. Para ello puede utilizarse
directamente el dispositivo de Soxhlet: El
disolvente que se va condensando debe
recogerse en el recinto de extracción de tal
manera que la superficie del líquido no rebose el
nivel del conducto ascendente y desemboque en
parte en un recipiente de recogida. A
continuación el matraz se coloca durante una
hora en una estufa a 103 ± 2 ºC, con lo que se
eliminan del residuo los últimos restos de
disolvente. El matraz se pesa tras enfriarse en
un desecador.
Cálculos:
El porcentaje de grasa G se calcula de acuerdo con la
siguiente relación matemática:
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 100
LUIS ARTICA MALLQUI
m2 - m1
%G = ----------------------------------- . 100
M
Donde:
m1 Masa en g del matraz redondo/de fondo plano(con
perlas de vidrio)
m2 Masa en g del matraz con grasa tras el secado
M peso de la muestra en g
BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 101
LUIS ARTICA MALLQUI
Acidez en Sistemas Alimenticios
La acidez titulable indica el contenido total de ácidos presentes en la
muestra alimenticia y se expresa en porcentajes, generalmente en
función del ácido orgánico que predomina en el sistema, pro ej. En la
leche, se tiene el ácido láctico, en las naranjas el ácido cítrico, en las
manzanas el ácido málico, en las uvas el ácido tartárico.
4.1. Origen de los Ácidos Orgánicos en los Sistemas
Alimenticios
El primer paso para predecir la acidez en un sistema alimenticio
fresco o procesado consiste en identificar cuales son sus
principales constituyentes y sus proporciones relativas respecto al
agua contenida en dicho sistema alimenticio.
Tal como se muestra en la figura 6 podemos considerar que un
sistema alimenticio es una "mezcla" acuosa más o menos
homogénea(o heterogénea) de varios
Constituyentes(biopolímeros, azúcares, sales orgánicas e
inorgánicas, etc.) que pueden variar en cantidad y calidad en
función de factores tales como clima, suelo, variedad, condiciones
de procesamiento, etc.
CAPITULO IV
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
El agua es por lejos el principal constituyente de los sistemas
alimenticios frescos constituyendo entre el 75-95% del peso de los
mismos. La acidez de los sistemas alimenticios está determinada
por la naturaleza y concentración de las especies químicas o
principios inmediatos.
Los sistemas alimenticios vegetales, como son las verduras y las
frutas, contienen cierto número de ácidos orgánicos, productos
metabólicos de las células. A continuación se presentan las
fórmulas para los ácidos orgánicos más importantes que
predominan en las mismas:
O
H — C — OH
Acido Fórmico(Metanoico)
PM = 46
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
104
H
|
H — C — COOH
|
HO — C — COOH
|
H — C — COOH
|
H
ACIDO CÍTRICO
PM = 192 L(+)
(Frutas)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
105
H
|
H — C — COOH
|
HO — C — COOH
|
H
Acido Málico (Hidroxisuccinico)
PM = 134 L(+)
(Manzana)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
106
H
|
H — C — COOH
|
HO— C — COOH
|
OH
Ácido Tartárico(2,3-dihidroxisuccinico)
PM = 150 L(+)
(Uvas)
(butanodioldioco)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
107
H
|
H — C — COOH
|
H — C — COOH
|
H
Acido Succínico(butandioico)
PM = 118
(Lechuga)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
108
H
|
C — COOH
║
C — COOH
|
H
Acido Fumárico(butendioico)
PM = 116
(alomaleico, bolético)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
109
H
|
H — C — COOH
|
C — COOH
║
C — COOH
|
H
Acido Aconítico(aquileico,citrídico)
PM = 174
(Vegetales)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
110
COOH
|
H — C — H
|
H
Acido Acético (etanoico)
PM = 60
(Vinagre)
COOH
|
COOH
Acido Oxálico (etandioico)
PM = 90
(Espinaca, remolacha)
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
111
COOH
|
HO — C — H
|
H — C — H
|
H
Acido Láctico(2-hidroxi-propiónico)
PM = 90
La mayoría de los sistemas alimenticios contienen ácidos
orgánicos, los que pueden ser el producto de:
a. Presencia natural, inherente a la composición química del
sistema alimenticio.
b. Metabolismo de los microorganismos, los que pueden ser
agregados intencionalmente para producir ciertos efectos
deseables, como en la fermentación láctica, acética.
c. Adición Voluntaria, ya sea con fines de protección contra los
microorganismos indeseables durante el transporte, almacenaje
o procesamiento, como el ácido sórbico, benzoíco; para inhibir
reacciones bioquímicas como el empardeamiento enzimático;
para ajustar el alimento a los parámetros requeridos para su
procesamiento(mermeladas, néctares, etc.).
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
112
4.2. Métodos de Determinación
4.2.1. Por Titulación Con Alcalis
Con NaOH(0,1N) ó 0,5N en presencia de fenolftaleína
como indicador(8,3 - 10) o azul de bromotimol(6,0 -
7,6). El contenido de acidez en el sistema alimenticio
se expresa generalmente en función al ácido
predominante:
- mL de álcali 0,1N / 10 g de muestra
- % de Acidez
El procedimiento que se sigue para determinar la
acidez titulable en sistemas alimenticios, esta en
función a la naturaleza reológica del mismo. Alimentos
líquidos en alicuota; alimentos viscosos en dilución y
Alimentos sólidos, previa extracción de los ácidos
mediante la molienda, trituración, centrifugación y
filtración.
4.2.2. Etapas de la Determinación de la Acidez
Titulable.
a) Preparación de la Muestra
Acondicionar la Muestra, si es sólida, TRITURAR.
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
113
b) Extracción de los Acidos
Cuando son materiales alimenticios bajos en
lípidos, los ácidos se extraen con agua destilada
libre de CO2
Cuando son materiales alimenticios altos en
lípidos, se extrae con una solución de etanol 90°
neutralizada con NaOH, la muestra se filtra luego
centrifuga.
c) Titulación
Luego de centrifugar la muestra, se toma una
alicuota a la que se agrega 2 a 3 gotas de
fenolftaleína y se titula con NaOH 0,1N.
c) Cálculos:
G . N . Meq
%Acidez = ------------------------ x 100
M
Donde: G = Gasto del álcali en la titulación de la muestra.
N = Normalidad del álcali M = g o mL en la Alicuota
Meq = Mili equivalente en gramos del ácido predominante
BROMATOLOGÍA APLICADA
LUIS ARTICA MALLQUI UNCP
114
4.2.3. Titulación Potenciométrica
El principio se basa que durante la titulación se alcanza el
pH de 8,2 - 8,3 y a este pH se determina con el proceso de
titulación, anotándose el gasto de la titulación.
4.3. Factores que Afectan La Determinación de la
Acidez Titulable
a. Presencia de CO2
- Altera los resultados de la titulación
- NaOH + CO2 = CO3Na2
- Se recomienda usar agua destilada libre de CO2 .
b. Presencia de Compuestos Oscuros
Dificulta apreciar el cambio de color a rosado. Se
recomienda en estos casos diluir la muestra hasta obtener
un color menos oscuro o decolorar con carbón activado al
1%. Si es muy difícil aclarar la muestra, es mejor determinar
con etanol 90°, neutralizando con NaOH.
C. Presencia de Grasa
Los Lípidos dificulta, Extraer con alcohol o neutralizar con NaOH
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos
Bromatología aplicada fundamentos

Más contenido relacionado

La actualidad más candente

Guias laboratorio de microbiologia de alimentos articulación educación media ...
Guias laboratorio de microbiologia de alimentos articulación educación media ...Guias laboratorio de microbiologia de alimentos articulación educación media ...
Guias laboratorio de microbiologia de alimentos articulación educación media ...Universidad Técnica de Manabí
 
7. mecanismos de deterioro delos alimentos [modo de compatibilidad]
7. mecanismos de deterioro delos alimentos [modo de compatibilidad]7. mecanismos de deterioro delos alimentos [modo de compatibilidad]
7. mecanismos de deterioro delos alimentos [modo de compatibilidad]Julia Mendoza
 
Analisis bromatologico de la mantequilla
Analisis bromatologico de la mantequillaAnalisis bromatologico de la mantequilla
Analisis bromatologico de la mantequillaElvia Sofia Arcos Apaza
 
Alteraciones y adulteraicones de la leche
Alteraciones y adulteraicones de la lecheAlteraciones y adulteraicones de la leche
Alteraciones y adulteraicones de la lecheMarjorie Tineo Díaz
 
Actividad de agua en los alimentos_propiedades fisicas del agua
Actividad de agua en los alimentos_propiedades fisicas del aguaActividad de agua en los alimentos_propiedades fisicas del agua
Actividad de agua en los alimentos_propiedades fisicas del aguaJerzy
 
Microbiologia de la leche y sus productos i
Microbiologia de la leche y sus productos iMicrobiologia de la leche y sus productos i
Microbiologia de la leche y sus productos iALEJANDRA JAIME
 
bromatologia, mantequilla y crema de leche
bromatologia, mantequilla y crema de lechebromatologia, mantequilla y crema de leche
bromatologia, mantequilla y crema de lechegabriela garcia
 
ANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACION
ANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACIONANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACION
ANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACIONGerardo Luna
 
Control de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto Vásquez
Control de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto VásquezControl de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto Vásquez
Control de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto VásquezMarilu Roxana Soto Vasquez
 
Analisis de muestreo microbiologico en alimentos
Analisis de muestreo microbiologico en alimentosAnalisis de muestreo microbiologico en alimentos
Analisis de muestreo microbiologico en alimentosAleyeli Cordova
 
diapositivas microbiologia de la leche
diapositivas microbiologia de la lechediapositivas microbiologia de la leche
diapositivas microbiologia de la lecheFabian Triana
 
bromatologia de la carne y productos cárnicos
bromatologia de la carne y productos cárnicos bromatologia de la carne y productos cárnicos
bromatologia de la carne y productos cárnicos gabriela garcia
 
Manual de fundamentos y técnicas de análisis de alimentos.
Manual de fundamentos y técnicas de análisis de alimentos.Manual de fundamentos y técnicas de análisis de alimentos.
Manual de fundamentos y técnicas de análisis de alimentos.keyla sofia de leon lucio
 
clase de Cereales de bromatologia
clase de Cereales de bromatologia clase de Cereales de bromatologia
clase de Cereales de bromatologia gabriela garcia
 

La actualidad más candente (20)

Guias laboratorio de microbiologia de alimentos articulación educación media ...
Guias laboratorio de microbiologia de alimentos articulación educación media ...Guias laboratorio de microbiologia de alimentos articulación educación media ...
Guias laboratorio de microbiologia de alimentos articulación educación media ...
 
Bromatología i
Bromatología iBromatología i
Bromatología i
 
7. mecanismos de deterioro delos alimentos [modo de compatibilidad]
7. mecanismos de deterioro delos alimentos [modo de compatibilidad]7. mecanismos de deterioro delos alimentos [modo de compatibilidad]
7. mecanismos de deterioro delos alimentos [modo de compatibilidad]
 
Analisis bromatologico de la mantequilla
Analisis bromatologico de la mantequillaAnalisis bromatologico de la mantequilla
Analisis bromatologico de la mantequilla
 
Alteraciones y adulteraicones de la leche
Alteraciones y adulteraicones de la lecheAlteraciones y adulteraicones de la leche
Alteraciones y adulteraicones de la leche
 
Actividad de agua en los alimentos_propiedades fisicas del agua
Actividad de agua en los alimentos_propiedades fisicas del aguaActividad de agua en los alimentos_propiedades fisicas del agua
Actividad de agua en los alimentos_propiedades fisicas del agua
 
Microbiologia de la leche y sus productos i
Microbiologia de la leche y sus productos iMicrobiologia de la leche y sus productos i
Microbiologia de la leche y sus productos i
 
bromatologia, mantequilla y crema de leche
bromatologia, mantequilla y crema de lechebromatologia, mantequilla y crema de leche
bromatologia, mantequilla y crema de leche
 
ANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACION
ANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACIONANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACION
ANALISIS FISICO-QUIMICO DE LOS ALIMENTOS - HARINAS Y PANIFICACION
 
Control de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto Vásquez
Control de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto VásquezControl de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto Vásquez
Control de Calidad de Aceites Vegetales por Q.F. Marilú Roxana Soto Vásquez
 
Analisis de muestreo microbiologico en alimentos
Analisis de muestreo microbiologico en alimentosAnalisis de muestreo microbiologico en alimentos
Analisis de muestreo microbiologico en alimentos
 
diapositivas microbiologia de la leche
diapositivas microbiologia de la lechediapositivas microbiologia de la leche
diapositivas microbiologia de la leche
 
Informe analisis de leche
Informe   analisis de lecheInforme   analisis de leche
Informe analisis de leche
 
Introduccion a analisis bromatologico
Introduccion a analisis bromatologicoIntroduccion a analisis bromatologico
Introduccion a analisis bromatologico
 
Ntp leche
Ntp lecheNtp leche
Ntp leche
 
bromatologia de la carne y productos cárnicos
bromatologia de la carne y productos cárnicos bromatologia de la carne y productos cárnicos
bromatologia de la carne y productos cárnicos
 
Prueba del alcohol
Prueba del alcoholPrueba del alcohol
Prueba del alcohol
 
Manual de fundamentos y técnicas de análisis de alimentos.
Manual de fundamentos y técnicas de análisis de alimentos.Manual de fundamentos y técnicas de análisis de alimentos.
Manual de fundamentos y técnicas de análisis de alimentos.
 
clase de Cereales de bromatologia
clase de Cereales de bromatologia clase de Cereales de bromatologia
clase de Cereales de bromatologia
 
Los alimentos y sus funciones
Los alimentos y sus funcionesLos alimentos y sus funciones
Los alimentos y sus funciones
 

Destacado

Comohacerunbromatologicoentortajatropha
ComohacerunbromatologicoentortajatrophaComohacerunbromatologicoentortajatropha
ComohacerunbromatologicoentortajatrophaGerhard Sierra
 
4971182 bromatologia
4971182 bromatologia4971182 bromatologia
4971182 bromatologiaMemo Onofre
 
bromatologia de los Vegetales aplicada a la nutrición
bromatologia de los Vegetales aplicada a la nutrición bromatologia de los Vegetales aplicada a la nutrición
bromatologia de los Vegetales aplicada a la nutrición gabriela garcia
 
Atlas de bromatologia completo volibar
Atlas de bromatologia completo volibarAtlas de bromatologia completo volibar
Atlas de bromatologia completo volibarOscar Frias
 
Informe 2 determinacion de fosforo en fertilizantes
Informe 2 determinacion de fosforo en fertilizantesInforme 2 determinacion de fosforo en fertilizantes
Informe 2 determinacion de fosforo en fertilizantesalejomp5
 
Determinación de fósforo en fertilizante
Determinación de fósforo en fertilizanteDeterminación de fósforo en fertilizante
Determinación de fósforo en fertilizanterecreouruguay
 
ComposicióN En Porcentaje
ComposicióN En PorcentajeComposicióN En Porcentaje
ComposicióN En Porcentajeguestb92c29a
 
el huevo
el huevoel huevo
el huevoanul
 
Manualdepractica bromatologia
Manualdepractica bromatologiaManualdepractica bromatologia
Manualdepractica bromatologiaanaevangal
 
Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...
Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...
Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...Isbosphere
 
Manual del inspector bromatológico
Manual del inspector bromatológicoManual del inspector bromatológico
Manual del inspector bromatológicoconway36
 
Grupo 1 Bromatologia
Grupo 1 BromatologiaGrupo 1 Bromatologia
Grupo 1 Bromatologiaguest531bdc
 

Destacado (20)

Tema 1 bromatologia
Tema 1 bromatologiaTema 1 bromatologia
Tema 1 bromatologia
 
Comohacerunbromatologicoentortajatropha
ComohacerunbromatologicoentortajatrophaComohacerunbromatologicoentortajatropha
Comohacerunbromatologicoentortajatropha
 
4971182 bromatologia
4971182 bromatologia4971182 bromatologia
4971182 bromatologia
 
Bromatología
BromatologíaBromatología
Bromatología
 
Manual análisis de alimentos
Manual análisis de alimentosManual análisis de alimentos
Manual análisis de alimentos
 
bromatologia de los Vegetales aplicada a la nutrición
bromatologia de los Vegetales aplicada a la nutrición bromatologia de los Vegetales aplicada a la nutrición
bromatologia de los Vegetales aplicada a la nutrición
 
Atlas de bromatologia completo volibar
Atlas de bromatologia completo volibarAtlas de bromatologia completo volibar
Atlas de bromatologia completo volibar
 
Informe 2 determinacion de fosforo en fertilizantes
Informe 2 determinacion de fosforo en fertilizantesInforme 2 determinacion de fosforo en fertilizantes
Informe 2 determinacion de fosforo en fertilizantes
 
Determinación de fósforo en fertilizante
Determinación de fósforo en fertilizanteDeterminación de fósforo en fertilizante
Determinación de fósforo en fertilizante
 
Menu enero
Menu eneroMenu enero
Menu enero
 
ComposicióN En Porcentaje
ComposicióN En PorcentajeComposicióN En Porcentaje
ComposicióN En Porcentaje
 
el huevo
el huevoel huevo
el huevo
 
Manualdepractica bromatologia
Manualdepractica bromatologiaManualdepractica bromatologia
Manualdepractica bromatologia
 
Informe de huevo
Informe de huevoInforme de huevo
Informe de huevo
 
Exposicion bromatologia
Exposicion bromatologiaExposicion bromatologia
Exposicion bromatologia
 
Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...
Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...
Extracción de alcaloides de la hierba mora (Solanum nigrum L.) y caracterizac...
 
Manual del inspector bromatológico
Manual del inspector bromatológicoManual del inspector bromatológico
Manual del inspector bromatológico
 
Proyecto huevos - hijos
Proyecto huevos - hijosProyecto huevos - hijos
Proyecto huevos - hijos
 
Grupo 1 Bromatologia
Grupo 1 BromatologiaGrupo 1 Bromatologia
Grupo 1 Bromatologia
 
Esquema weende moodle
Esquema weende moodleEsquema weende moodle
Esquema weende moodle
 

Similar a Bromatología aplicada fundamentos

Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817Victor Fregoso
 
Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817saida uribe
 
07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf
07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf
07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdfyessyPujaicoPalacios
 
Manual Bioquímica Clínica UNAM
Manual Bioquímica Clínica UNAMManual Bioquímica Clínica UNAM
Manual Bioquímica Clínica UNAMOswaldo A. Garibay
 
001 introduccion aq
001 introduccion aq001 introduccion aq
001 introduccion aqqfb_esteban
 
Guia para muestreo_de_alimentos__fao
Guia para muestreo_de_alimentos__faoGuia para muestreo_de_alimentos__fao
Guia para muestreo_de_alimentos__faoDeisy contreras
 
Introduccion al analisis de alimentos espol
Introduccion al analisis de alimentos espolIntroduccion al analisis de alimentos espol
Introduccion al analisis de alimentos espolDerly Morales
 
Análisis de alimentos
Análisis de alimentosAnálisis de alimentos
Análisis de alimentossanrafael-1
 
Cuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentariosCuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentariosMassiel Gutierrez Espinosa
 
Cuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentariosCuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentariosMassiel Gutierrez Espinosa
 
Pro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-veg
Pro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-vegPro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-veg
Pro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-vegJuan Rodríguez
 

Similar a Bromatología aplicada fundamentos (20)

Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817
 
Manual bioquimica
Manual bioquimicaManual bioquimica
Manual bioquimica
 
Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817
 
Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817Manualbioquimicaclinica 10817
Manualbioquimicaclinica 10817
 
07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf
07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf
07._GUIA_DE_BROMATOLOGIA_Y_NUTRICION_2020-I.pdf
 
Manual Bioquímica Clínica UNAM
Manual Bioquímica Clínica UNAMManual Bioquímica Clínica UNAM
Manual Bioquímica Clínica UNAM
 
001 introduccion aq
001 introduccion aq001 introduccion aq
001 introduccion aq
 
Tema 1
Tema 1Tema 1
Tema 1
 
Guia para muestreo_de_alimentos__fao
Guia para muestreo_de_alimentos__faoGuia para muestreo_de_alimentos__fao
Guia para muestreo_de_alimentos__fao
 
Introduccion al analisis de alimentos espol
Introduccion al analisis de alimentos espolIntroduccion al analisis de alimentos espol
Introduccion al analisis de alimentos espol
 
LQ. Manual de Anexos. M2-S1.pdf
LQ. Manual de Anexos. M2-S1.pdfLQ. Manual de Anexos. M2-S1.pdf
LQ. Manual de Anexos. M2-S1.pdf
 
Análisis de alimentos
Análisis de alimentosAnálisis de alimentos
Análisis de alimentos
 
Introducción a la Quimica Analitica
Introducción a la Quimica AnaliticaIntroducción a la Quimica Analitica
Introducción a la Quimica Analitica
 
Introducción quimica analitica
Introducción quimica analiticaIntroducción quimica analitica
Introducción quimica analitica
 
Cuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentariosCuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentarios
 
Cuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentariosCuaderno microbiologia productos agroalimentarios
Cuaderno microbiologia productos agroalimentarios
 
Fundamentos1 analit-2019
Fundamentos1 analit-2019Fundamentos1 analit-2019
Fundamentos1 analit-2019
 
Técnicas toxicológicas
Técnicas toxicológicasTécnicas toxicológicas
Técnicas toxicológicas
 
Quimica analitica
Quimica analiticaQuimica analitica
Quimica analitica
 
Pro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-veg
Pro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-vegPro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-veg
Pro uccirt-res-02 4-toma-y-env.-muest-residuos-contamin-orig.-animal-y-veg
 

Último

Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...GloriaMeza12
 
Descubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdf
Descubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdfDescubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdf
Descubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdfjavisoad
 
propiedades y clasificacion de los materiales metalicos
propiedades y clasificacion de los materiales metalicospropiedades y clasificacion de los materiales metalicos
propiedades y clasificacion de los materiales metalicosOmarazahiSalinasLpez
 
Clase ii INTRODUCCION AL TRABAJO SOCIAL.
Clase ii INTRODUCCION AL TRABAJO SOCIAL.Clase ii INTRODUCCION AL TRABAJO SOCIAL.
Clase ii INTRODUCCION AL TRABAJO SOCIAL.Victor Rivera Tapia
 
NEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUA
NEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUANEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUA
NEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUAcelixfabiolacaleropa
 
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaproblemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaArturoDavilaObando
 
Síndrome del Niño Maltratado signos de alerta
Síndrome del Niño Maltratado signos de alertaSíndrome del Niño Maltratado signos de alerta
Síndrome del Niño Maltratado signos de alertaanapauflores2007
 
PARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidad
PARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidadPARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidad
PARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidadeumartinezvete
 
Coherencia textual II Práctica dirigida h
Coherencia textual II Práctica dirigida hCoherencia textual II Práctica dirigida h
Coherencia textual II Práctica dirigida hSalomDB1
 
Mapa conceptual de la Cristalografía .pdf
Mapa conceptual de la Cristalografía .pdfMapa conceptual de la Cristalografía .pdf
Mapa conceptual de la Cristalografía .pdfHeidyYamileth
 
CLASE 5 HOJA 2022.ppt botanica general 1
CLASE 5 HOJA 2022.ppt botanica general 1CLASE 5 HOJA 2022.ppt botanica general 1
CLASE 5 HOJA 2022.ppt botanica general 1jesusjja0210
 
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.Ralvila5
 
INTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdf
INTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdfINTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdf
INTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdfGuillermoCamino4
 
FISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdf
FISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdfFISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdf
FISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdfOrlandoBruzual
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
calculo aplicado a la fisica 3 .pdf
calculo  aplicado  a  la  fisica  3 .pdfcalculo  aplicado  a  la  fisica  3 .pdf
calculo aplicado a la fisica 3 .pdfRolandPisfilLLuenGor
 
Virus del dengue perú 2024 diagnostico,manejo,
Virus del dengue perú 2024 diagnostico,manejo,Virus del dengue perú 2024 diagnostico,manejo,
Virus del dengue perú 2024 diagnostico,manejo,KiaraIbaezParedes
 
Tractos ascendentes y descendentes de la médula
Tractos ascendentes y descendentes de la médulaTractos ascendentes y descendentes de la médula
Tractos ascendentes y descendentes de la méduladianymorales5
 
La independencia de México único resistencia y consumación
La independencia de México único resistencia y consumaciónLa independencia de México único resistencia y consumación
La independencia de México único resistencia y consumaciónMoralesSantizBrendaL
 
5. Célula animal y vegetal y sus diferencias.pptx
5. Célula animal y vegetal y sus diferencias.pptx5. Célula animal y vegetal y sus diferencias.pptx
5. Célula animal y vegetal y sus diferencias.pptxealva1
 

Último (20)

Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
 
Descubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdf
Descubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdfDescubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdf
Descubrimiento de la Penicilina y su uso en la seguna guerra mundial.pdf
 
propiedades y clasificacion de los materiales metalicos
propiedades y clasificacion de los materiales metalicospropiedades y clasificacion de los materiales metalicos
propiedades y clasificacion de los materiales metalicos
 
Clase ii INTRODUCCION AL TRABAJO SOCIAL.
Clase ii INTRODUCCION AL TRABAJO SOCIAL.Clase ii INTRODUCCION AL TRABAJO SOCIAL.
Clase ii INTRODUCCION AL TRABAJO SOCIAL.
 
NEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUA
NEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUANEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUA
NEMATODOS TISULARES-2020.pdf, DE LA UNAN MANAGUA
 
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaproblemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
 
Síndrome del Niño Maltratado signos de alerta
Síndrome del Niño Maltratado signos de alertaSíndrome del Niño Maltratado signos de alerta
Síndrome del Niño Maltratado signos de alerta
 
PARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidad
PARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidadPARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidad
PARTES y Anatomía de la ESCÁPULA.descrpcion, fncinalidad
 
Coherencia textual II Práctica dirigida h
Coherencia textual II Práctica dirigida hCoherencia textual II Práctica dirigida h
Coherencia textual II Práctica dirigida h
 
Mapa conceptual de la Cristalografía .pdf
Mapa conceptual de la Cristalografía .pdfMapa conceptual de la Cristalografía .pdf
Mapa conceptual de la Cristalografía .pdf
 
CLASE 5 HOJA 2022.ppt botanica general 1
CLASE 5 HOJA 2022.ppt botanica general 1CLASE 5 HOJA 2022.ppt botanica general 1
CLASE 5 HOJA 2022.ppt botanica general 1
 
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
 
INTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdf
INTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdfINTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdf
INTRODUCCIÓN A LAS DISPENSACIONES abril 2024.pdf
 
FISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdf
FISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdfFISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdf
FISIOLOGIA DEL APARATO REPRODUCTOR FEMENINO.pdf
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
calculo aplicado a la fisica 3 .pdf
calculo  aplicado  a  la  fisica  3 .pdfcalculo  aplicado  a  la  fisica  3 .pdf
calculo aplicado a la fisica 3 .pdf
 
Virus del dengue perú 2024 diagnostico,manejo,
Virus del dengue perú 2024 diagnostico,manejo,Virus del dengue perú 2024 diagnostico,manejo,
Virus del dengue perú 2024 diagnostico,manejo,
 
Tractos ascendentes y descendentes de la médula
Tractos ascendentes y descendentes de la médulaTractos ascendentes y descendentes de la médula
Tractos ascendentes y descendentes de la médula
 
La independencia de México único resistencia y consumación
La independencia de México único resistencia y consumaciónLa independencia de México único resistencia y consumación
La independencia de México único resistencia y consumación
 
5. Célula animal y vegetal y sus diferencias.pptx
5. Célula animal y vegetal y sus diferencias.pptx5. Célula animal y vegetal y sus diferencias.pptx
5. Célula animal y vegetal y sus diferencias.pptx
 

Bromatología aplicada fundamentos

  • 1. UNIVERSIDAD NACIONAL DEL CENTRO DEL PERU FACULTAD DE INGENIERIA EN INDUSTRIAS ALIMENTARIAS TALLER DE EXTENSIÓN DE INDUSTRIAS ALIMENTARIAS(T.E.I.A.) BROMATOLOGÍA APLICADA Fundamentos, Métodos, Aplicaciones 3ª Edición Edición Experimental Huancayo - Perú 2003 luis_Fabri@Yahoo.com
  • 2. BROMATOLOGÍA APLICADA VOL. I 2 LUIS ARTICA MALLQUI UNCP. Título Original: Bromatología Aplicada. Fundamentos, Métodos, Aplicaciones @ Libros y editoriales, TEIA., 2003. Impreso y Hecho en Perú. Printed and made in Perú. Reservados Todos Los derechos. Ninguna parte de ésta publicación puede ser reproducida; sin previo y Expreso permiso del propietario del COPYRIGHT. Del Autor: LUIS ARTICA MALLQUI Ingeniero en Industrias Alimentarias Miembro T.E.I.A. ESTUDIOS: Post Grado EN BROMATOLOGIA - U.N.M.S.M. Post Grado De Tecnología de Alimentos- UNA. La Molina Docente: Universidad Peruana Unión - Lima Perú. Universidad Nacional Del Centro Del Perú - Huancayo Perú. Universidad Peruana Los Andes.
  • 3. BROMATOLOGÍA APLICADA VOL. I 3 LUIS ARTICA MALLQUI UNCP. PREFACIO En estas últimas décadas estamos convencidos del inmenso poder didáctico que tiene el área del análisis químico y físico de los alimentos en la formación de los Ingenieros en Alimentos, Químico-Farmacéuticos, Bromatólogos y Nutricionistas, al proporcionarles simultáneamente la oportunidad de aplicar los fundamentos de la Bioquímica, Físico-química, Química analítica y Química de Alimentos en la evaluación de la Calidad de la sistemas alimenticios frescos y procesados y culminar su práctica contrastando los resultados a la luz de las Normas Oficiales. En la obra se busca sistematizar parte de la experiencia acumulada y esta dirigido a satisfacer las necesidades prioritariamente del personal profesional responsable del análisis Químico-Físico de los alimentos en el Departamento de Control de Calidad de las pequeñas y medianas Plantas industriales de alimentos y así mismo de los estudiantes de Ingeniería en Industrias Alimentarías, Farmacia y Bioquímica, Bromatología-Nutrición y demás personas que están involucradas con Laboratorios del Análisis Químico y Físico de Alimentos. Existen diversos métodos establecidos para el análisis químico-físico de los alimentos y están al alcance en numerosas obras, como ésta, protocolos del procedimiento analítico. Empero, en esta se ha querido presentar solo los métodos en nuestra opinión personal más usados a nivel de laboratorios de análisis de alimentos, para la evaluación Química y Físico de los alimentos. Los métodos recomendados originales son los establecidos por la A.O.A.C.(Association of Official Analytical Chemists) (1998) , el IDF y el Codex Alimentarius, sin embargo en esta, se recomienda los métodos más aplicables en nuestro medio. Los temas considerados en la presente obra, básicamente corresponden a los principios básicos del análisis cuantitativo y cualitativo en el análisis de los alimentos, sistemas de muestreo, los principios inmediatos de los sistemas alimenticios, protocolos bromatológicos generales en los alimentos, acidez en sistemas Alimenticios, pH ó acidez real de sistemas alimenticios y finalmente las misceláneas bromatológicas. Por otro lado es oportuno hacer público nuestro agradecimiento a los profesores de nuestra Alma Mater Universidad Nacional Mayor de San Marcos, nuestros maestros y colaboradores durante el desarrollo del texto, quienes con sus experiencias están contribuyendo en la formación de numerosas generaciones de Químico- Farmacéuticos, tecnólogos en alimentos, y Bromatólogos. LUIS ARTICA MALLQUI
  • 4. BROMATOLOGÍA APLICADA VOL. I 4 LUIS ARTICA MALLQUI UNCP. INTRODUCCIÓN ANALISIS BROMATOLOGICO DE ALIMENTOS 1.1. Análisis Cuantitativo Trata de la identificación de substancias. Esta interesado en que elementos o compuestos están presentes en una muestra. El análisis cuantitativo, se orienta a la determinación de que cantidad de una sustancia en particular está presente en una muestra. La substancia determinada, se llama componente Deseado ó ANALITA; y puede constituir una pequeña o gran parte de la muestra analizada. Si la Analita es más del : 1% de la muestra = Componente principal 0,01% al 1% = Componente menor. < al 0,01% = Componente vestigial Una clasificación del análisis cuantitativo es: Análisis macro = peso de muestra > de 0,1 g
  • 5. BROMATOLOGÍA APLICADA VOL. I 5 LUIS ARTICA MALLQUI UNCP. Análisis Semi-micro = Peso de muestra de 10 a 100 mg. Análisis Micro = peso de muestra de 1 a 10 mg. Análisis ultramicro = peso de muestra en microgramos (1 µg = 10 –6 g). 1.2. Análisis Cualitativo Es el primer encuentro que tiene el estudiante, que trata de identificar o separar cualitativamente, por precipitación, cambios de color, sedimentación, etc., pueden emplearse técnicas instrumentales como la espectroscopia de infrarrojo y resonancia magnética Nuclear. 1.3. Etapas En El Análisis Químico y Físico De Alimentos. a. Muestreo. Seleccionar una muestra representativa del material que va a ser analizado, según la naturaleza del sistema alimenticio: Sólido :Molienda o triturar(reducción de tamaño), tamizar. Líquidos:Si el líquido que va a ser analizado es homogéneo, el procedimiento de muestreo es fácil; pero si es heterogéneo es más difícil; líquido que circula en un sistema de tuberías, se toma en diferentes puntos del
  • 6. BROMATOLOGÍA APLICADA VOL. I 6 LUIS ARTICA MALLQUI UNCP. sistema. Gas : Volumen, velocidad, duración del muestreo. b. Preparación ó transformación de la Analita En Una Forma Mensurable. Conversión de la analita a una forma mensurable. Antes de hacer la determinación física o química para medir la cantidad de analito en una muestra, por lo general es necesario resolver el problema de las “Interferencias”. Las interferencias deben ser inmovilizados o eliminados mediante la alteración de su naturaleza química o física. c. Medición -El análisis se realizará con la brevedad posible. -Se realizará con medios químicos, físicos ó biológicos. La técnica que se utiliza en el laboratorio ha llevado a la clasificación de los métodos cuantitativos en las subdivisiones: a. Análisis Volumétrico: Requiere la medición del volumen de una solución de
  • 7. BROMATOLOGÍA APLICADA VOL. I 7 LUIS ARTICA MALLQUI UNCP. concentración conocida, que se necesita en la reacción con la analita. b. Análisis Gravimetrico. Medición del peso o masa de la analita. c. Análisis Instrumental. Uso de instrumento especial en la etapa de medición. En realidad, los instrumentos se pueden emplear en cualquier de los pasos del análisis, y en forma de rigor, las buretas y las balanzas analíticas son instrumentos. Otros métodos instrumentales: espectroscopia de absorción y de emisión; potenciometría, polarografía, culombimetría, conductimetría, polarimetría, refractometría, Espectrometría de masa, etc.,. Los análisis se realizan en laboratorios oficiales, sobre la base de métodos oficiales. d. Cálculo e Interpretación de las Mediciones. El proceso final en un análisis es el cálculo del porcentaje de la analita en la muestra. La interpretación de los resultados obtenidos de los métodos analíticos no siempre es sencilla, debido a que se pueden cometer errores con cualquier
  • 8. BROMATOLOGÍA APLICADA VOL. I 8 LUIS ARTICA MALLQUI UNCP. medición; el ingeniero en alimentos debe considerar esta posibilidad al interpretar sus resultados. Los métodos estadísticos se emplean comúnmente y son muy útiles para expresar el significado de los datos analíticos. - Presentación de resultados - Un informe técnico. 1.4. Los Errores y El Tratamiento de Datos La estadística y la teoría de la probabilidad poseen una estructura lógica y rigurosa para el tratamiento de datos. a. Errores Se refiere a la diferencia numérica entre el valor medido y el valor real. El valor real de cualquier cantidad es en realidad una abstracción filosófica, algo que el hombre no está destinado a conocer. 1.5. Muestreo En El Análisis de Alimentos. Es la toma de una alicuota o porción de muestra del material problema a evaluar, bajo ciertas normas establecidas. La toma de muestras debe realizarse mediante un acta formalizada, por triplicado ante el titular de la empresa o establecimiento sujeto a inspección(Madrid, 1996).
  • 9. BROMATOLOGÍA APLICADA VOL. I 9 LUIS ARTICA MALLQUI UNCP. Una muestra puede definirse como “una porción o artículo que indica la calidad de todo lo que ha sido tomado”. Como quiera que la mayoría de alimentos que hay que muestrear no son homogéneos en su confección o en una presunta adulteración, no suele ser posible tomar una muestra perfecta. El objetivo del muestreo es seleccionar una porción o un número de recipientes o de unidades de un producto que sea altamente representativo de una partida o lote de alimentos del que se ha tomado. Un lote puede ser una porción de una partida de alimentos enviados o almacenados que lleve la misma codificación, sea un producto distinto del resto de la partida o sea diferente en cualquier otra forma. El tamaño de la muestra debe ser suficiente para permitir su análisis de laboratorio, o su repetición su fuera necesaria. Es importante sincronizar las prioridades de inspección y de laboratorio con el fin de garantizar que las muestras de una inspección se analicen con prontitud. A. CLASES DE TOMA DE MUESTRAS a.1. Toma de muestras selectiva
  • 10. BROMATOLOGÍA APLICADA VOL. I 10 LUIS ARTICA MALLQUI UNCP. Por lo general, las muestras se toman para ilustrar o documentar condiciones insatisfactorias observadas por el inspector, o para permitir el análisis en laboratorio de un alimento posiblemente adulterado. La tomo de muestras se puede realizar en cualquier punto de la cadena de producción, durante una inspección, en el almacén, en el establecimiento mayorista o en el mercado o establecimiento minorista. Las muestras que se toman como consecuencia de reclamaciones de clientes, observaciones de la inspección o cualquier otro motivo, se suelen “seleccionar”, es decir, se eligen de forma que ofrezcan la mejor oportunidad de confirmar determinados hechos conocidos. a.2. Toma de muestras objetiva La toma de muestras objetiva es bastante directa, ya que suele haber indicios u otra información que conduzca a las unidades de alimentos seleccionados para la muestra. Por su parte, la toma de muestras objetiva puede resultar complicada, ya que es difícil proceder con objetividad cuando se trata de determinar la auténtica
  • 11. BROMATOLOGÍA APLICADA VOL. I 11 LUIS ARTICA MALLQUI UNCP. calidad de un lote determinado de alimentos no homogéneos. El inspector se preguntará siempre si la muestra recogida fue demasiado pequeña, o excesivamente grande, y si la selección se hizo realmente al azar. 1.5.1. Características de Muestreo La toma de muestra debe realizarse por triplicado homogéneamente bajo las siguientes recomendaciones: 1. Acondicionados 2. Precintados 3. Lacrados 4. Etiquetados Además, debe indicarse los siguientes datos: 5. Identidad de la muestra 6. Contenido 7. Código 8. Fecha de muestreo. 1.5.2. Deposito de la Muestra El depósito de las unidades Muestreadas se hará de la siguiente forma:
  • 12. BROMATOLOGÍA APLICADA VOL. I 12 LUIS ARTICA MALLQUI UNCP. a. Fabricantes (Empresa). 01 muestra quedará en poder del fabricante bajo deposito, en unión de una copia del acta con la obligación de conservarla en perfecto estado para su posterior utilización en prueba contradictoria si es necesario. Las otras dos muestras quedarán en poder de la inspección. b. Distribuidores del Producto. Sólo quedará en su poder una copia del acta de muestreo. Las tres muestras serán retiradas por la inspección, y luego una de las muestras se podrán a disposición del fabricante, envasador o interesado autorizado.
  • 13. BROMATOLOGÍA APLICADA VOL. I 13 LUIS ARTICA MALLQUI UNCP. CAPITULO I LOS PRINCIPIOS INMEDIATOS COMO NUTRIENTES EN LOS SISTEMAS ALIMENTICIOS 1.1.PROTEÍNAS Las proteínas son compuestos altamente polimerizados, que están formados por α-aminoácidos de configuración L. También se unen a componentes no proteícos: estas proteínas complejas se denominan proteidos. La clasificación de las proteínas, se puede apreciar en la figura 1. Las proteínas se encuentran entre los nutrientes más importantes,
  • 14. BROMATOLOGÍA APLICADA VOL. I 14 LUIS ARTICA MALLQUI UNCP. Junto con los lípidos y los carbohidratos. Estos es así no por su función energética(1 g proteína = 4,1 Kcal =17,2 KJ), sino porque son necesarios, por su naturaleza nitrogenada, para la síntesis de compuestos propios del organismo implicados en la estructura de las membranas junto con los lipoides, como glicoproteidos en funciones de lubricación y como nucleidos que posibilitan la síntesis de las proteínas propias del organismo, así como la formación de los cromosomas y la división celular. El valor nutritivo de las numerosas proteínas alimentarias existentes dependen de su digestibilidad, que depende a su vez de la estructura, es decir, de su composición aminoacídica. El contenido de aminoácidos esenciales( de los aproximadamente 30 aminoácidos 8(+2) son esenciales) determina el valor biológico, es decir, el mayor aprovechamiento fisiológico de una proteína por parte del organismo. Rige la ley del mínimo: si la oferta de aminoácidos esenciales es demasiado limitada, el conjunto del rendimiento de las reacciones de síntesis dependerá del aminoácido que esté presente en menor cantidad(= aminoácido limitante). Los aminoácidos limitantes más importantes son la lisina(en cereales y papas) y la metionina(en carnes y leche). Las proteínas se encuentran entre los nutrientes más importantes, Junto con los lípidos y los carbohidratos. Estos es así no por su función energética(1 g proteína = 4,1 Kcal =17,2 KJ), sino porque son necesarios, por su naturaleza nitrogenada, para la síntesis de compuestos propios del organismo implicados en la estructura de
  • 15. BROMATOLOGÍA APLICADA VOL. I 15 LUIS ARTICA MALLQUI UNCP. las membranas junto con los lipoides, como glicoproteidos en funciones de lubricación y como nucleidos que posibilitan la síntesis de las proteínas propias del organismo, así como la formación de los cromosomas y la división celular. Figura. 1. Clasificación de las proteínas Elastina Colágeno Escleroproteínas Fibrinógeno (proteínas fibrilares) Fibroína de la seda. Miosina Queratina Proteínas Sencillas Albúminas Globulinas Proteínas sencillas Prolaminas PROTEINAS (proteínas globulares) Histonas Protaminas Gluteninas Nucleoproteidos Lipoproteidos Fosfoproteidos Proteidos Glicoproteídos, Cromoproteidos, metaloproteidos
  • 16. BROMATOLOGÍA APLICADA VOL. I 16 LUIS ARTICA MALLQUI UNCP. El valor nutritivo de las numerosas proteínas alimentarias existentes dependen de su digestibilidad, que depende a su vez de la estructura, es decir, de su composición aminoacídica. El contenido de aminoácidos esenciales( de los aproximadamente 30 aminoácidos 8(+2) son esenciales) determina el valor biológico, es decir, el mayor aprovechamiento fisiológico de una proteína por parte del organismo. Rige la ley del mínimo: si la oferta de aminoácidos esenciales es demasiado limitada, el conjunto del rendimiento de las reacciones de síntesis dependerá del aminoácido que esté presente en menor cantidad(= aminoácido limitante). Los aminoácidos limitantes más importantes son la lisina(en cereales y papas) y la metionina(en carnes y leche). En la siguiente tabla se recoge el contenido proteíco y valor nutritivo de los alimentos más importantes que aportan proteínas.
  • 17. BROMATOLOGÍA APLICADA VOL. I 17 LUIS ARTICA MALLQUI UNCP. El valor nutritivo se expresa en unidades NPU(net protein utilization): un valor de NPU de 100 equivale al valor nutritivo de proteína ideal. Alimento Valor NPU Contenido Proteico Huevos Legumbres Harina de trigo Papas Carne magra de vacuno Pescado Leche 94 30 35 67 76 80 86 13 21-26 10-12 2 19 18 aprox. 3-4 Fuente: Matissek, 1998 1.1.1. Caracterización de Proteínas Las proteínas tienen una estructura molecular
  • 18. BROMATOLOGÍA APLICADA VOL. I 18 LUIS ARTICA MALLQUI UNCP. extraordinariamente compleja. La analítica de los compuestos de este tipo es como consecuencia también extraordinariamente complicada. Por ello, en este texto sólo se darán las indicaciones acerca de cómo determinar las proteínas y de cómo caracterizarlas con más detalle. 1.1.2. Reacciones Generales de detección Las siguientes pruebas se realizan directamente en el material a investigar. a. Reacción de Biuret Los polipéptidos(la mínima unidad de reacción es el tripéptido) reacción con una disolución diluida de sulfato cúprico en medio fuertemente alcalino, mostrando una coloración azul caracteristica: O R ║  R C  CH    — CO  CH  NI NH  CO  CH  NH  II Cu —HN — CH —CO — HN IN — CH — CO — │ | | | R HC — C R R O
  • 19. BROMATOLOGÍA APLICADA VOL. I 19 LUIS ARTICA MALLQUI UNCP. b. Reacción con la Ninhidrina Un caso especial de degradación de Strecker es la reacción de la Ninhidrina, que es de gran importancia para la determinación fotométrica cuantitativa de los aminoácidos. La sustancia azul violeta formada absorbe a 570 nm. Con prolina se forma una sustancia amarilla con una longitud de onda de 440 nm. c. Reacción de las Xantoproteínas Al añadir ácido nítrico concentrado en presencia de aminoácidos aromáticos se forman nitroderivados de color amarillo. d. Reacción con sulfuro de plomo Al añadir una disolución de acetato de plomo en medio fuertemente alcalino se observa una coloración negra ( presencia de compuestos proteicos azufrados). Las Proteínas estructuralmente son polímeros cuyas unidades básicas son aminoácidos unidos por un enlace característico que recibe el nombre de enlace peptídico. La secuencia de grupos
  • 20. BROMATOLOGÍA APLICADA VOL. I 20 LUIS ARTICA MALLQUI UNCP. aminoácidos caracteriza a una proteína y las propiedades físicas, químicas y nutricionales dependen de la composición en aminoácidos de la molécula protéica y de la forma como se enlazan para conformar su estructura. El nitrógeno representa en la mayoría de las sustancias proteicas un porcentaje relativamente constante, alrededor del 16%, su determinación sirve como medida del contenido proteico en los alimentos. 1.2.Dosificación De Las Proteínas En los Alimentos En la alimentación la dosificación de las proteínas constituye uno de los controles analíticos fundamentales, a causa de las repercusiones nutricionales que conllevan a una insuficiencia o a un desequilibrio en aminoácidos. La dosificación analítica del nitrógeno se puede: a. Determinación del contenido en nitrógeno(método Kjeldahl) a.1. Activación neutrónica b. La dosificación de Funciones o radicales: b.1. Reacción química del enlace peptídico o dosificación
  • 21. BROMATOLOGÍA APLICADA VOL. I 21 LUIS ARTICA MALLQUI UNCP. de las uniones peptídicas y posterior medida fotométrica(por ej., Método de Biuret; concentraciones entre 200 a 1000 mg de proteína) b.2. Reacción química de determinados aminoácidos de la proteína y posterior medida fotométrica(por ej., determinación con el reactivo Folin-Ciocalteu; reacciona fundamentalmente la tirosina). b.3. Método Lowry(concentraciones entre 20 y 200 mg de proteínas) b.4. Absorción de las proteínas en el ultravioleta(determinación de los aminoácidos aromáticos triftófano, tirosina y fenilalanina; los máximos de absorción se encuentran en torno a los 280 nm) b.5. Absorción en el cercano al infra-rojo b.6. Medida de la turbidez por floculación de la proteína disuelta mediante un precipitante de proteínas. La aplicación de éstos análisis en la industria alimentaria son: Detección y dosificación de las enzimas en los alimentos: Análisis del cuajo comercial, actividades amilásicas de la cebada. Detección de la adulteración de leche y los productos lecheros. Estudio de la desnaturalización de las proteínas de leche, por calor.
  • 22. BROMATOLOGÍA APLICADA VOL. I 22 LUIS ARTICA MALLQUI UNCP. Detección de fraudes en los productos cárnicos: presencia de carne de vaca, caballo, aves, en los productos dichos "puro cerdo": Adición de proteínas de leche o de proteínas de soya. La identificación de cereales: harina de trigo blando o de trigo duro, proteína de soya, maní etc. En 1883, Johan Kjeldahl, Científico danés (1840-1900) publico en la Z. Anal. Chem. El método que hoy lleva su nombre, destinado a determinar el nitrógeno en muestras orgánicas, de origen animal y vegetal. La digestión Kjeldahl transforma proteínas, aminas y otros compuestos orgánicos nitrogenados en derivados amónicos. Al añadir a éstos una solución fuertemente alcalina, se libera amoniaco que es entonces eliminado por destilación y valorado. El método de Kjeldhal, consiste en : 1. Oxidación de la muestra con H2SO4 y catalizadores, durante la cual la materia orgánica se destruye y el nitrógeno se convierte en sulfato ácido de amonio según la reacción:
  • 23. BROMATOLOGÍA APLICADA VOL. I 23 LUIS ARTICA MALLQUI UNCP. H2SO4 N2 Orgánico -------------------→ CO2 + NH4 HSO4 + H2O Catalizador 2. Descomposición del sulfato ácido de amonio por medio de un exceso de álcali fuerte para liberar el amoníaco, el cual se recoge por destilación sobre ácido bórico. Las reacciones que suceden son: NH4 HSO4 + 2 NaOH NH3 + Na2 SO4 + 2H2O NH4 OH + H3 BO3 NH4 H2 BO3 + H2 O 3. Titulación del borato de amonio formado con solución patrón de ácido clorhídrico o ácido sulfúrico, usando como indicadores de punto final una mezcla de rojo de metilo y azul de metileno o una mezcla de rojo de metilo y verde de bromocresol. La reacción de titulación se muestra de la
  • 24. BROMATOLOGÍA APLICADA VOL. I 24 LUIS ARTICA MALLQUI UNCP. siguiente forma: NH4 H2 BO3 + Hcl NH4 Cl + H3 BO3 La cantidad de proteína bruta se obtiene multiplicando el porcentaje de nitrógeno determinado, por el factor 6,25 generalmente; para la proteína de cereales se multiplica por el factor 5,7 y para la proteína de leche el factor utilizado es 6,38. Este método así como otros como el colorimétrico en el cual se mide el derivado amoniacal formado con el fenol o con hipoclorito sódico, se basa en la medición del amoniaco formado por todo el nitrógeno presente en la muestra, por lo cual el valor obtenido no es el real a no ser que de alguna manera se elimine el nitrógeno no proteico en la preparación de la muestra. Además estos métodos dan una apreciación cuantitativa de la proteína presente mas no orientan sobre la calidad de la misma, su riqueza en aminoácidos y capacidad de asimilación, factores que determinan el valor nutricional de la proteína.
  • 25. BROMATOLOGÍA APLICADA VOL. I 25 LUIS ARTICA MALLQUI UNCP. 1.3. CARBOHIDRATOS Y FIBRA BRUTA Mediante un procedimiento analítico sencillo no se puede determinar el gran grupo de carbohidratos puesto que está integrado por numerosas entidades químicas que carecen de una característica analítica común. Henneberg y stohman, citados por Becker, dividierón por tanto, toda esta fracción en dos grupos: Una parte insoluble en ácidos y bases a la que llamarón “Fibra bruta” y una fracción soluble a la que denominarón “Extracto no nitrogenado”(ENN). En la fracción fibra bruta se encuentran comúnmente: Celulosa, pentosanas, lignina, suberina, cutina, alginatos y pectinas. La celulosa es un polimero lineal de unidades de anhidroglucosa unidas entre ellas por junturas glicosídicas de tipo β-1,4. El grado de polimerización es del orden de 1 0000 unidades por molécula.
  • 26. BROMATOLOGÍA APLICADA VOL. I 26 LUIS ARTICA MALLQUI UNCP. Las hemicelulosas son heteropolisacáridos cortos, ramificados, fácilmente hidrolizables enzimáticamente. Por ejemplo las de caña de maíz contiene 70% de xilosa, 9% de arabinosa, 14,5% de glucosa y 5,9% de otros. Los azúcares C5 (xilosa y arabinosa) son mayoritarios, la glucosa siempre está presente y los otros están constituidos por los ácidos urónicos y otros azúcares en menor proporción. La hidrólisis enzimática de las hemicelulosas proporciona esencialmente pentosas no muy útiles para fermentar hasta alcohol pero útiles para la fermentación aceto-butílica. Las ligninas son polímeros tridimensionales de origen fenólico, sintetizados por la deshidrogenasa radical de tres alcoholes fenil- propenóicos: El alcohol cumarílico, el alcohol coniferilico y el alcohol sinapílico; las uniones entre moléculas basales son de diferentes tipos, muchas de las cuales no son hidrolizables. Los productos de degradación de las ligninas no son prácticamente fermentables. La celulosa, la hemicelulosa y las ligninas en su estado natural son prácticamente insolubles en agua.
  • 27. BROMATOLOGÍA APLICADA VOL. I 27 LUIS ARTICA MALLQUI UNCP. Los carbohidratos se trata por lo general de compuestos polihidroxicarbonílicos y de compuestos estructuralmente relacionados derivados de ellos. Debido a su abundancia, los carbohidratos forman parte de las sustancias naturales más importantes, presentándose como componentes dulces de los frutos y como sustancias de reserva importante en el reino vegetal(almidón) y animal(glucógeno). Un 1 g de carbohidrato= 4,1Kcal=17,2 KJ.
  • 28. BROMATOLOGÍA APLICADA VOL. I 28 LUIS ARTICA MALLQUI UNCP. Pentosas, hexosas, heptosas MONOSACÁRIDOS Desoxi-,anhidro-,aminoazúcares Cetosas Acidos ónicos,ácidos urónicos Azúcares-éster,-alcohol,-éter OLIGOSACARIDOS Di-, Tri-, Tetra- --------- Heptasacáridos Almidón,glucógeno Celulosa Homopolisacáridos Dextrinas, Dextranos Sacaridos INulina Pectina POLISACÁRIDOS Hemicelulosa Heteropolisacáridos Gomas vegetales Agar agar GLUCÓSIDOS Fuente: Matissek, Schnepel y Steiner ; 1998 Figura 2. Clasificación de los Carbohidratos (Sacáridos)
  • 29. BROMATOLOGÍA APLICADA VOL. I 29 LUIS ARTICA MALLQUI UNCP. 1.3.1. Determinación de Mono y Oligosacáridos Existe una gran variedad de métodos para su determinación que se basan en distintos principios. La sensibilidad de cada método depende, entre otras cosas, de la composición de la muestra o de su matriz y es muy variable: a. Métodos cromatográficos b. Medida de la capacidad rotatoria óptica(polarimetría). c. Oxidación del grupo Aldehído/ceto en disolución salina d. Métodos enzimáticos e. Métodos fotométricos tras su conversión en compuestos coloreados(Matissek y Et. al; 1998). 1.4.Determinación de FIBRA BRUTA. El método empleado para la determinación de la Fibra bruta, consiste en efectuar dos digestiones. La primera con ácido sulfúrico y la segunda con hidróxido de sodio. La finalidad del método es la de eliminar las proteínas, carbohidratos solubles, residuos de grasas, vitaminas y otros compuestos diferentes que interfieren en su determinación. El fundamento del método es asemejar este proceso al que desempeña el organismo en su función digestiva.
  • 30. BROMATOLOGÍA APLICADA VOL. I 30 LUIS ARTICA MALLQUI UNCP. En años recientes se han propuesto otros métodos que utilizan diferentes mezclas de ácidos como el de White House (acético + nítrico + tricloroacético) o el de Van Soest que utiliza una sal de amonio cuaternario (bromo de cetil trimetil amonio) en medio sulfúrico, para producir la hidrólisis. A continuación se especifican las reacciones involucradas en el análisis de fibra cruda por diferentes métodos: FIGURA 3. REACCIONES INVOLUCRADAS EN EL ANALISIS DE FIBRA CRUDA POR EL METODO DE WEENDE- OFICIAL AOAC. 1. Hidrólisis ácida : a. Carbohidratos (Cn H2n On )m --------------------→ m Cn H2n On n = 5 - 6 b. Proteínas O R2 H O=C-OH   | | H+ R - CH - C - N - C - C - N - C - R3     NH2 H H O n
  • 31. BROMATOLOGÍA APLICADA VOL. I 31 LUIS ARTICA MALLQUI UNCP. R1 - CH - C = O + nR - CH - C = O + R3 - CH -C=O    NH2 NH2 NH2 R1 ≠ R2 ≠ R3 = Radical 2. Hidrólisis de Proteína O R2 H O=C-OH  | | | H+ R - CH - C - N - C - C - N - C - R3    NH2 H H O n ONa ONa ONa    R1 - CH - C = O + nR - CH - C = O + R3 - CH -C=O    NH2 NH2 NH2 R1 ≠ R2 ≠ R3 = Radical
  • 32. BROMATOLOGÍA APLICADA VOL. I 32 LUIS ARTICA MALLQUI UNCP. FIGURA 4. REACCIONES INVOLUCRADAS EN EL ANALISIS DE FIBRA CRUDA POR EL METODO DE VAN SOEST. Carbohidratos : H+ (Cn H2n On )m --------------------→ m Cn H2n On n = 5 - 6 Proteínas O R2 H O=C-OH  | | | H+ R - CH - C - N - C - C - N - C - R3     NH2 H H O (S) n OH R2 OH O= C - OH  | |  R1 — CH — C — N — C — C — N — C — R3    ║  | NH2 H H O H H (L) n R1 ≠ R2 ≠ R3 = Radical
  • 33. BROMATOLOGÍA APLICADA VOL. I 33 LUIS ARTICA MALLQUI UNCP. 1.5.Fibra Dietaria. En la década de los ochenta los investigadores en alimentos han enfocado su interés sobre la fracción de la fibra bruta que puede ser útil para los procesos digestivos en el tracto humano. A esta fracción se le ha dado el nombre de fibra dietaria. En esta fracción se incluyen compuestos tales como el almidón, los polisacáridos no celulósicos, la celulosa, la lignina, la hemicelulosa y sustancias pécticas. Se han ideado numerosos métodos de determinación de las diversas fracciones que la constituyen, sin embargo hasta el momento no ha sido adoptado como oficial ninguno de ellos. Por ejemplo Anderson en 1988, propuso que la fibra dietaria total puede calcularse conociendo las fracciones determinadas como polisacáridos no almidones totales, polisacáridos no almidones solubles, polisacáridos no celulósicos insolubles, celulosa y lignina.. Algunos de los métodos propuestos combinan la acción de enzimas amilasas para digerir la fracción almidón con métodos químicos de hidrólisis ácida.
  • 34. BROMATOLOGÍA APLICADA VOL. I 34 LUIS ARTICA MALLQUI UNCP. 1.6.EXTRACTO NO NITROGENADO(E.N.N.) En esta fracción se agrupan mono y disacáridos, la parte soluble de la celulosa, pentosanas y lignina, las hemicelulosas, el almidón, la inulina y toda clase de azúcares, materias pécticas, ácidos orgánicos y otras materias solubles libres de nitrogeno, constituyendo así la fracción más valiosa del alimento. El porcentaje de extractivos no nitrogenados se determina por cálculo como ya se explicó, restando de 100 los porcentajes de humedad, grasa, fibra, cenizas y proteína o también, si se ha calculado el porcentaje de materia seca, se resta de este las cantidades correspondientes a los contenidos de grasa, fibra, ceniza y proteínas expresados todos como porcentajes. Este procedimiento está afectado por las inexactitudes propias de la determinación analítica de los otros componentes, por eso sus resultados son relativamente aproximados. 1.7.CENIZAS O MATERIAL MINERAL La naturaleza y calidad de las variadas combinaciones minerales se encuentran en las plantas alimentarias, son difíciles de determinar aún cuando el resultado de la incineración del material permite una orientación sobre su cantidad aproximada, puesto que en el proceso cambia la naturaleza de las combinaciones originales debido a la destrucción de la materia orgánica.
  • 35. BROMATOLOGÍA APLICADA VOL. I 35 LUIS ARTICA MALLQUI UNCP. En general las cenizas se componen de carbohidratos originados en la materia orgánica y no propiamente de la muestra. La determinación debe hacerse aumentando progresivamente la temperatura del horno, hasta alcanzar el rojo oscuro (± 500°C). No se debe dejar pasar de esta temperatura pues se podría descomponer los carbonatos presentes y se volatilizarían otras sustancias como los compuestos de fósforo, produciendo así resultados erróneos. Otra forma de destruir la materia orgánica es por oxidación húmeda, con ácido nítrico o sulfúrico concentrados.. El análisis de las cenizas debe estar enfocado a la determinación de calcio, fósforo, potasio, manganeso y hierro y demás elementos que tienen significado en alimentación humana. Los elementos presentes pueden determinarse por numerosos métodos. El método propuesto en esta revisión comprende la Incineración de la muestra y la solubilización de las cenizas con ácido clorhídrico para formar los cloruros respectivos, los cuales pueden valorarse finalmente, por métodos volumétricos, colorimétricos o por absorción atómica. 1.8.Extracto Etéreo o Grasa Bruta Las grasas verdaderas o triglicéridos son compuestos orgánicos carentes de nitrogeno, que se forman en el metabolismo vegetal y animal y que poseen desde un punto de vista fisiológico un elevado valor calorífico.
  • 36. BROMATOLOGÍA APLICADA VOL. I 36 LUIS ARTICA MALLQUI UNCP. Son nutrientes con mayor poder energético(1 g de grasa = 9,3 Kcal =38,KJ). Las grasas, por lo general , se encuentran asociadas con numerosas sustancias acompañantes(lipoides), estrechamente relacionadas bioenergéticamente unas con otras. Las grasas y sus sustancias acompañantes, que en conjunto se denominan también lípidos, se diferencian entre sí básicamente por su estructura química, aunque presentan en su totalidad propiedades químico- físicas similares, como por ejemplo la solubilidad en disolventes orgánicos(Matissek, et. al; 1998) Este comportamiento químico-físico se emplea en analítica, por lo que la extracción con disolventes orgánicos es un procedimiento para la determinación del contenido total de grasa. Esta medida tiene importancia para evaluar el valor nutritivo, en los controles de calidad y para el reconocimiento de falsificaciones. El término “Lípidos” hace referencia” a un grupo de sustancias cuya definición es aún menos precisa que la de los hidratos de carbono. Generalmente, hace referencia a un grupo heterogéneo de sustancias relacionadas con los sistemas biológicos, que tienen en común su insolubilidad en el agua y su solubilidad en disolventes no polares, como los hidrocarburos, o en los alcoholes.
  • 37. BROMATOLOGÍA APLICADA VOL. I 37 LUIS ARTICA MALLQUI UNCP. En este grupo, se incluyen los aceites y las grasas( No existe distinción formal entre grasas y aceite. Los aceites son líquidos y las grasas sólidos a la temperatura ambiente) de la dieta, junto con los llamados fosfolípidos, asociados a las membranas celulares(Coultate, 1998). Los lípidos de todos los sistemas alimenticios son ésteres de ácidos grasos de cadena larga, pero existen muchos otros lípidos que no responden a estas características estructurales. Entre ellos, se incluyen los esteroides y los terpenos pero, con la excepción del colesterol(y sus ésteres de ácidos grasos de cadena larga), Las únicas sustancias de este tipo que adquieren cierta relevancia en los alimentos son las vitaminas, pigmentos o compuestos aromatizantes(Coultate, 1998).
  • 38. BROMATOLOGÍA APLICADA VOL. I 38 LUIS ARTICA MALLQUI UNCP. Figura 5. Clasificación de Lípidos GLICÉRIDOS LIPIDOS SENCILLOS CERAS ACIDOS GRASOS ALCOHOLES DERIVADOS LIPIDOS LIPIDICOS LIPOVITAMINAS HIDROCARBUROS Ác. Fosfátidos (lecitina) Fosfátidos de GLICEROFOSFÁTIDOS inositol PLASMALÓGENOS CEFALINAS LIPIDOS LIPIDOS COMPELJOS COMPLEJOS Esfingomielina ESFINGOLÍPIDOS Cerebrósidos (sulfátidos) Gangliósidos Fuente: Matissek, Schnepel y Steiner ; 1998
  • 39. BROMATOLOGÍA APLICADA VOL. I 39 LUIS ARTICA MALLQUI UNCP. CAPITULO II LABORATORIO DE ENSAYO DE BROMATOLOGÍA Es importante remarcar que en una planta Industrial de Alimentos, el laboratorio de Bromatología juega un papel fundamental en la evaluación de la calidad permanente que deben cumplir la materia prima así como los derivados elaborados. Es conocido por todos que el Laboratorio puede definirse como el lugar donde los investigadores y los técnicos obtienen datos experimentales reproducibles y que permitan sustentar una investigación, una evaluación, o fundamentar el diagnóstico del estado de las materias primas así como de los derivados procesados.
  • 40. BROMATOLOGÍA APLICADA VOL. I 40 LUIS ARTICA MALLQUI UNCP. El proceso de implementación, tanto del diseño como de su equipamiento, debe ser realizado con todas las especificaciones que requiere el caso y con el concurso de personal especializado. Por otro lado las normas básicas que deben conocer el personal especializado que trabajan en el laboratorio de una industria de leche deben ser establecidos a nivel del departamento de Control de calidad y el analista de Alimentos y derivados debe tener presente las siguientes Mandamientos fundamentales: 2.1.LOS DIEZ MANDAMIENTOS COMO NORMA GENERAL DEL LABORATORIO DE BROMATOLOGIA 1. Establecer y optimizar los Protocolos de análisis de los sistemas alimenticios, en relación a las normas establecidas, considerando a los analistas responsables; Disponibilidad de materiales, y equipos. 2. Previo al inicio del desarrollo de cualquier protocolo de análisis de sistemas alimenticios; es necesario que el material de vidrio, equipos, deben estar correctamente preparados, limpios, estériles, y correctamente calibrados. 3. La práctica del orden, limpieza, puntualidad deben ser normas establecidas en el analista responsable, y de esta forma mantener una sistema de trabajo muy eficiente y confiable.
  • 41. BROMATOLOGÍA APLICADA VOL. I 41 LUIS ARTICA MALLQUI UNCP. 4. Debe conocer sobre normas de seguridad en el uso y manipuleo de los materiales y los reactivos que se usan, y siempre debe ser escrupuloso en la limpieza de los materiales y exigir que los reactivos deben presentar una pureza requerida, para evitar cualquier error en el análisis y posibles contaminaciones. Todo reactivo preparado, debe ser valorado a la concentración requerida y conservado en frascos de reactivos debidamente limpios y etiquetados, anotando su fecha de preparación. 5. Las evaluaciones químicas, físicas, deben realizarse con bastante cuidado; para tal efecto, una vez obtenido los datos, debe contarse con un libro adecuado de registros y anotase con mucho cuidado y responsabilidad. 6. El analista, debe contar con un uniforme de trabajo y que básicamente consiste en un mandil de color blanco, Calzados deben ser de tacón bajo y cerrados de color blanco o zapatos de goma, delantal de goma, una gorra, y para análisis específicos debe usar gafas y guantes de goma. 7. El analista debe cumplir con normas muy rígidas, el cabello debe mantener corto o estar sujetado (si es de cabello largo debe retirarse y atarse) y siempre debe mantener una higiene personal escrupulosa. 8. El sistema de codificado de muestras debe ser establecido con un patrón adecuado, para evitar cualquier confusión y/o permutación; en cada muestra como mínimo debe indicarse, su código, la fecha, etc.,.
  • 42. BROMATOLOGÍA APLICADA VOL. I 42 LUIS ARTICA MALLQUI UNCP. 9. El analista debe elaborar un adecuado sistema de reporte de diario de trabajo de laboratorio, en donde se considera los análisis rutinarios, número de muestras por línea, frecuencia de análisis, fecha de evaluación, analista responsable; además estos reportes deben ser elaborados cotidianamente con mucha claridad y responsabilidad. 10.Como medida de seguridad, y con el objeto de que la empresa permanentemente eleve la calidad de los productos lácteos procesados, el personal profesional y técnico, permanentemente debe someterse a una capacitación, orientación rigurosa, con el objeto de renovar y estar actualizado sobre las innovaciones en el análisis de leche y en el uso y manipuleo de materiales y equipos. 2.2.OPERACIONES FUNDAMENTALES EN EL LABORATORIO DE ENSAYO DE BROMATOLOGIA Los principios fundamentales de actuación a nivel de laboratorio en una Planta de Alimentos, requiere de una conducta profesional eficiente y de excelencia; Todos los que son responsables del laboratorio deben practicar los principios de una buena organización con el objetivo de lograr una máxima eficacia y por ende una calidad total.
  • 43. BROMATOLOGÍA APLICADA VOL. I 43 LUIS ARTICA MALLQUI UNCP. El Personal Profesional y técnico, deben ser conocedores de las especificaciones, uso de todos los materiales y equipos que se utilizan para el análisis de los sistemas alimenticios y comestibles, así como de su mantenimiento y limpieza; considerando estos aspectos a continuación se establece que las operaciones fundamentales a nivel del laboratorio de Ensayo de Bromatología son: a. Limpieza. El objetivo fundamental de ésta operación, es para obtener resultados fiables y reproducibles sin la inducción de cualquier error debido al efecto de un lavado deficiente y/o material extraño presente en el material de análisis. Para realizar la operación de lavado o limpieza, generalmente se combina la limpieza mecánica que implica el arrastre de sustancias extrañas con la limpieza química que consiste en disolver o destruir cualquier materia orgánica adherida en el material de vidrio o equipo. El agente para la limpieza mecánica es el agua, coadyuvado por un cepillo arrastra cualquier residuo presente en el material, pero esta limpieza es insuficiente por lo que es necesario realizar una limpieza química.
  • 44. BROMATOLOGÍA APLICADA VOL. I 44 LUIS ARTICA MALLQUI UNCP. La limpieza química, se realiza con agentes químicos inorgánicos, para este fin utilizamos una mezcla sulfocrómica de ácido sulfúrico y dicromato de potasio y se lava en caliente, esta mezcla oxida y degrada a la materia orgánica; también se utiliza ácido clorhídrico o nítrico que fundamentalmente disuelven precipitados adheridos a las paredes del material de vidrio así como de accesorios y equipos; el uso de los jabones y detergentes son los responsables de la solubilización de la masa lipídica adherida al material. Una vez terminado la operación de lavado o limpieza del material o equipo, es necesario realizar por lo menos un enjuague con agua corriente de grifo unas tres veces y otras tres con agua destilada estéril; concluido cada enjuague se debe escurrir y luego someter a un secado en una estufa con aire seco o esterilizarlos dependiendo del tipo de material y su uso.
  • 45. BROMATOLOGÍA APLICADA VOL. I 45 LUIS ARTICA MALLQUI UNCP. b.Enmasado o Pesado Es un punto crítico del proceso del desarrollo del protocolo de análisis, la cual se utiliza para determinar la masa de todos los tamaños de muestras a analizar, así como de los reactivos tanto en su dosificación como durante su preparación. El equipo principal para estos casos es la balanza analítica de una sensibilidad establecida; las balanzas pueden ser de sistemas de pesas, como las digitales. Las balanzas analíticas más usadas a nivel de laboratorio de Bromatología son con capacidades hasta 100 gramos con una precisión de 0,0001 gramos. c.Pipeteo y Aforado Es necesario que la medición de líquidos volumétricamente sean con bastante precisión y cuando se trata de volúmenes muy pequeños se debe realizarse con pipetas específicas; Las pipetas son tubos capilares abiertos en ambos extremos y presentan una graduación volumétrica y otras son aforadas.
  • 46. BROMATOLOGÍA APLICADA VOL. I 46 LUIS ARTICA MALLQUI UNCP. La mayoría de las pipetas graduadas utilizadas en el análisis de Alimentos, corresponde al líquido que cae espontáneamente al destapar el extremo superior (sin soplar), y otras pipetas requieren para expulsar la totalidad del líquido por un soplado (tipo "Blow out"). La medición de volúmenes muy pequeños se realiza con micropipetas y microjerinjas; para el caso de mediciones de 0,1 a 10 mL. se usan pipetas con diámetros anchos en donde se observa la formación de menisco líquido. En estos casos la lectura se debe realizar cuando el menisco es tangente a la línea que señala la graduación o aforo. Cuando se quiere medir volúmenes de 10 a 1 000 mL. se utilizan fiolas o pipetas debidamente aforados a la temperatura de trabajo de la fiola o pipeta. d. Ajuste de Soluciones y Diluciones Es necesario que la preparación y ajuste de soluciones y disoluciones a nivel de laboratorio deben ser evaluados y correctamente valorados previo al inicio de la ejecución del protocolo de análisis. Es muy importante recordar, que una forma más común de diluir una solución patrón es aplicando un elemental cálculo de dilución a nivel cuantitativo según la
  • 47. BROMATOLOGÍA APLICADA VOL. I 47 LUIS ARTICA MALLQUI UNCP. siguiente relación de Diluciones: Relación I: V1 . c1 = V2 . c2 Donde : V1 y c1 son volumen y Concentración inicial. V2 y c2 son volumen y concentración final Relación II: V1 . N1 = V2 . N2 Donde : V1 y N1 son volumen y Normalidad inicial. V2 y N2 son volumen y Normalidad final. Se recomienda que cuando se transfiere cuantitativamente los solutos al matraz aforado se utiliza una varilla de vidrio y se arrastra el soluto con una pequeña porción del disolvente, y así paulatinamente se va añadiendo a la fiola hasta aforar; se debe disolver totalmente los solutos solidos antes de completar el aforado.
  • 48. BROMATOLOGÍA APLICADA VOL. I 48 LUIS ARTICA MALLQUI UNCP. e.Valoración o Factorización Todo análisis a nivel de laboratorio presenta un principio químico fundamental la de realizarse en base a reacciones químicas cuantitativas y cualitativas; esto explica que la transformación de la sustancia inicial íntegramente en los productos finales se realiza estequiométricamente cuando las proporciones de las sustancias reaccionantes están perfectamente definidas y son constantes. Una forma clásica de presentar a una reacción estequiométrica cuantitativa, es cuando se valora una solución de NaOH con una solución de HCl bajo las mismas concentraciones y cuya reacción es de la siguiente forma: NaOH + HCl NaCl + H2O
  • 49. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 51 LUIS ARTICA MALLQUI De la reacción podemos mencionar que una Mol de NaOH reacciona con una Mol de HCl, formándose una Mol de NaCl y una Mol de H2O respectivamente. Este principio se emplea para realizar las valoraciones o factorizaciones de todos las soluciones o reactivos que se utilizan para el análisis de alimentos y derivados. Ott (1992), y Macarulla (1984) definen que una Valoración es una operación la cual determina la concentración de una solución problema en base a la medición del volumen de una solución patrón que reacciona estequiométricamente con un volumen conocido de la solución problema. Es necesario recordarles que un equivalente de cualquier sustancia reacciona siempre con un equivalente de otra. Por lo tanto el punto de equivalencia es aquél en el que están presentes cantidades iguales de los cuerpos reaccionantes, mientras que el punto final es aquél en que se sabe que la reacción ha concluido. En lo referente a Indicadores podemos indicar que son sustancias químicas que en el punto final de la reacción experimentan un cambio brusco, manifestándose en el cambio de coloración de la solución que se esta valorando.
  • 50. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 52 LUIS ARTICA MALLQUI Para realizar una óptima valoración siempre se debe recordar por norma el concepto de Equivalente químico, ya que en las reacciones de neutralización (Valoración) y de óxido-reducción se utiliza una cantidad de sustancia llamada Equivalente Químico, que viene a ser la cantidad de sustancia que puede liberar, adicionar, sustituir, o desplazar un átomo- gramo de hidrógeno; como ejemplo citaremos lo siguiente: Ejemplo 1: Una Mol de H2 SO4 puede liberar 2 átomos-gramo de H+ , por lo tanto contiene dos equivalentes: 1 Mol H2SO4 = 2 equivalentes 1 Equivalente de H2SO4= M / 2 = 98/2 = 49 g. Ejemplo 2 : Una Mol de NaOH puede captar 1 átomo-gramo de H+ , por lo tanto contiene un equivalente: 1 Mol NaOH = 1 equivalente.
  • 51. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 53 LUIS ARTICA MALLQUI 1 Equivalente NaOH = M/1 = 40/1 = 40 g. 2.3.PROPIEDAD FUNDAMENTAL DE LOS EQUIPOS DE MEDICIÓN Considerando que los datos reproducibles que se obtienen deben ser significativos, es necesario adoptar ciertas especificaciones que presentan como propiedad fundamental los equipos y instrumentos de medición en el laboratorio.
  • 52. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 54 LUIS ARTICA MALLQUI Estas propiedades, están directamente relacionado con factores extrínsecos (como es la temperatura, humedad, etc.,) e intrínsecos (calibración, sensibilidad, precisión, etc.,) los cuales influyen sobre los resultados, por lo que nace un término bastante conocido denominado Error de medición, que viene a ser la diferencia entre la medida aparente obtenida y la medida real. Además se puede reconocer dos tipos de errores; el error absoluto, que es la diferencia propiamente dicha, y el error relativo, que es el cociente entre el error absoluto y la medida. Los errores se deben a diferentes causas o factores, considerando estos factores, los errores pueden ser Sistemáticos y accidentales (estadísticos); los sistemáticos se deben a un instrumento de medida inadecuado o mal uso del instrumento, estos errores no se detectan por repetición de la medida, es inherente a la medición (constante). Los errores accidentales o estadísticos, se deben a causas no previsibles, y se pueden detectar y corregir repitiendo la medición. Para evitar cualquier error de medición es necesario familiarizarnos con las propiedades fundamentales de los equipos e instrumentos y diferenciar la:
  • 53. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 55 LUIS ARTICA MALLQUI a.La Sensibilidad Es la magnitud más pequeña que es capaz de medir el instrumento. Si consideramos a nivel práctico, que una balanza analítica tiene una sensibilidad de 0,1 miligramos, es decir, no puede detectar variaciones de masa inferiores a 0,1 miligramos. b.La Fiabilidad Es la propiedad que hace que las medidas sea reproducibles, es decir, que varias mediciones de una misma magnitud arrojen el mismo resultado. Ahora a nivel práctico podemos indicar que una balanza es fiable cuando en ella se pesa tres veces consecutivas una misma masa debe dar en los tres casos el mismo resultado. c.La Precisión Consiste en realizar las medidas con un error relativo suficientemente pequeño. En la práctica, se observa que si una balanza pesa 100 gramos con un error relativo de 1/1 000 es más preciso que una balanza que pesa 10 miligramos con un error relativo de 1/100.
  • 54. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 56 LUIS ARTICA MALLQUI 2.4. Análisis Cuantitativo Trata de la identificación de substancias. Esta interesado en que elementos o compuestos están presentes en una muestra.
  • 55. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 57 LUIS ARTICA MALLQUI El análisis cuantitativo, se orienta a la determinación de que cantidad de una sustancia en particular está presente en una muestra. La substancia determinada, se llama componente Deseado ó ANALITA; y puede constituir una pequeña o gran parte de la muestra analizada. Si la Analita es más del : 1% de la muestra = Componente principal 0,01% al 1% = Componente menor. < al 0,01% = Componente vestigial Una clasificación del análisis cuantitativo es: Análisis macro = peso de muestra > de 0,1 g Análisis Semi-micro = Peso de muestra de 10 a 100 mg. Análisis Micro = peso de muestra de 1 a 10 mg. Análisis ultramicro = peso de muestra en microgramos (1 µg = 10 –6 g). 2.5.Análisis Cualitativo Es el primer encuentro que tiene el estudiante, que trata de identificar o separar cualitativamente, por precipitación, cambios de color, sedimentación, etc., pueden emplearse técnicas instrumentales como la espectroscopia de infrarrojo y resonancia magnética Nuclear.
  • 56. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 58 LUIS ARTICA MALLQUI 2.6.Etapas En El Análisis Químico y Físico De Alimentos. a. Muestreo. Seleccionar una muestra representativa del material que va a ser analizado. b. Preparación ó transformación de la Analita En Una Forma Mensurable. Conversión de la analita a una forma mensurable. c. Medición d. Cálculo e Interpretación de las Mediciones. La descripción de las etapas se indican a continuación: Muestreo:deben ser muestras representativas según la naturaleza del sistema alimenticio. Sólido :Molienda o triturar(reducción de tamaño), tamizar. Líquidos:Si el líquido que va a ser analizado es homogéneo, el procedimiento de muestreo es fácil; pero si es heterogéneo es más difícil; líquido que circula en
  • 57. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 59 LUIS ARTICA MALLQUI un sistema de tuberías, se toma en diferentes puntos del sistema. Gas:Volumen, velocidad, duración del muestreo. Transformación de la Analita En Una Forma Mensurable: Antes de hacer la determinación física o química para medir la cantidad de analita en una muestra, por lo general es necesario resolver el problema de las “Interferencias”. Las interferencias deben ser inmovilizados o eliminados mediante la alteración de su naturaleza química o física. Medición: - El análisis se realizará con la brevedad posible. - Se realizará con medios químicos, físicos ó biológicos. La técnica que se utiliza en el laboratorio ha llevado a la clasificación de los métodos cuantitativos en las subdivisiones: a. Análisis Volumétrico: Requiere la medición del volumen de una solución de concentración conocida, que se necesita en la reacción con la analita. b. Análisis Gravimetrico. Medición del peso o masa de la analita. c. Análisis Instrumental. Uso de instrumento especial en la etapa de medición. En
  • 58. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 60 LUIS ARTICA MALLQUI realidad, los instrumentos se pueden emplear en cualquier de los pasos del análisis, y en forma de rigor, las buretas y las balanzas analíticas son instrumentos. Otros métodos instrumentales: espectroscopía de absorción y de emisión; potenciometría, polarografía, culombimetría, conductimetría, polarimetría, refractometría, Espectrometría de masa, etc.,. Los análisis se realizan en laboratorios oficiales, sobre la base de métodos oficiales. Cálculo e Interpretación de las Mediciones El proceso final en un análisis es el cálculo del porcentaje de la analita en la muestra. La interpretación de los resultados obtenidos de los métodos analíticos no siempre es sencilla, debido a que se pueden cometer errores con cualquier medición; el ingeniero en alimentos debe considerar esta posibilidad al interpretar sus resultados. Los métodos estadísticos se emplean comúnmente y son muy útiles para expresar el significado de los datos analíticos. - Presentación de resultados - Un informe técnico.
  • 59. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 61 LUIS ARTICA MALLQUI 2.7. Los Errores y El Tratamiento de Datos La estadística y la teoría de la probabilidad poseen una estructura lógica y rigurosa para el tratamiento de datos. a.Errores Se refiere a la diferencia numérica entre el valor medido y el valor real. El valor real de cualquier cantidad es en realidad una abstracción filosófica, algo que el hombre no está destinado a conocer. 2.8.Muestreo En El Análisis de Alimentos. Es la toma de una alicuota o porción de muestra del material problema a evaluar, bajo ciertas normas establecidas. La toma de muestras debe realizarse mediante un acta formalizada, por triplicado ante el titular de la empresa o establecimiento sujeto a inspección(Madrid, 1996). Una muestra puede definirse como “una porción o artículo que indica la calidad de todo lo que ha sido tomado”. Como quiera que la mayoría de alimentos que hay que muestrear no son homogéneos en su confección o en una
  • 60. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 62 LUIS ARTICA MALLQUI presunta adulteración, no suele ser posible tomar una muestra perfecta. El objetivo del muestreo es seleccionar una porción o un número de recipientes o de unidades de un producto que sea altamente representativo de una partida o lote de alimentos del que se ha tomado. Un lote puede ser una porción de una partida de alimentos enviados o almacenados que lleve la misma codificación, sea un producto distinto del resto de la partida o sea diferente en cualquier otra forma. El tamaño de la muestra debe ser suficiente para permitir su análisis de laboratorio, o su repetición su fuera necesaria. Es importante sincronizar las prioridades de inspección y de laboratorio con el fin de garantizar que las muestras de una inspección se analicen con prontitud. A. CLASES DE TOMA DE MUESTRAS Toma de muestras selectiva Por lo general, las muestras se toman para ilustrar o documentar condiciones insatisfactorias observadas por el
  • 61. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 63 LUIS ARTICA MALLQUI inspector, o para permitir el análisis en laboratorio de un alimento posiblemente adulterado. La tomo de muestras se puede realizar en cualquier punto de la cadena de producción, durante una inspección, en el almacén, en el establecimiento mayorista o en el mercado o establecimiento minorista. Las muestras que se toman como consecuencia de reclamaciones de clientes, observaciones de la inspección o cualquier otro motivo, se suelen “seleccionar”, es decir, se eligen de forma que ofrezcan la mejor oportunidad de confirmar determinados hechos conocidos. Toma de muestras objetiva La toma de muestras objetiva es bastante directa, ya que suele haber indicios u otra información que conduzca a las unidades de alimentos seleccionados para la muestra. Por su parte, la toma de muestras objetiva puede resultar complicada, ya que es difícil proceder con objetividad cuando se trata de determinar la auténtica calidad de un lote determinado de alimentos no homogéneos. El inspector se
  • 62. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 64 LUIS ARTICA MALLQUI preguntará siempre si la muestra recogida fue demasiado pequeña, o excesivamente grande, y si la selección se hizo realmente al azar. 2.8.1. Características de Muestreo La toma de muestra debe realizarse por triplicado homogéneamente bajo las siguientes recomendaciones: a. Acondicionados b. Precintados c. Lacrados d. Etiquetados Además, debe indicarse los siguientes datos: e. Su identidad de la muestra f. Su contenido g. Su código h. Su fecha de muestreo.
  • 63. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 65 LUIS ARTICA MALLQUI 2.8.2.Deposito de la Muestra El depósito de las unidades Muestreadas se hará de la siguiente forma: c.Fabricantes (Empresa). 01 muestra quedará en poder del fabricante bajo deposito, en unión de una copia del acta con la obligación de conservarla en perfecto estado para su posterior utilización en prueba contradictoria si es necesario. Las otras dos muestras quedarán en poder de la inspección. d.Distribuidores del Producto.
  • 64. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 66 LUIS ARTICA MALLQUI CAPITULO III 3.1.PROTOCOLOS BROMATOLÓGICOS GENERALES EN LOS ALIMENTOS La evaluaciuón básica de los sistemas alimenticios como materias primas o Productos Alimentarios Intermediarios(PAI), no sólo comprende la determinación de sus principales analitas o principios inmediatos(proteínas, grasas, carbohidratos, cenizas), sino también se tiene que evaluar la determinación de magnitudes físicas generales. Los métodos aplicables son los químicos y los físico-químicos, electrométricos, gravimétricos, volumétricos,
  • 65. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 67 LUIS ARTICA MALLQUI instrumentales. Dentro de las evaluaciones generales de los sistemas alimenticios se encuentran parámetros reproducibles como la determinación de la densidad o gravedad específica, contenido de agua, materia seca, ceniza, fibra bruta y fibra dietária. 3.2.Densidad La densidad o masa específica de una sustancia se define como la masa de su unidad de volumen(g/mL) y se determina por pesada. La magnitud de la densidad depende de la temperatura y de la presión. Aunque la temperatura debe especificarse junto con la densidad, la presión no es necesaria en el caso de líquidos y sólidos porque son prácticamente incompresibles. para que la determinación sea precisa habrá de corregirse el error debido a la presión del aire o en caso contrario la pesada deberá realizarse en condiciones de vacío(Matissek, etal, 1998).
  • 66. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 68 LUIS ARTICA MALLQUI Aplicaciones Bebidas Zumos de frutas Vino, cerveza, bebidas alcohólicas, analcohólicas Procedimiento Aparatos y materiales - Baño maría con termostato - Picnómetro de 50 mL con su tapón correspondiente - Embudo picnométrico - Capilares de vidrio - Rollos de papel de filtro Reactivos - Agua destilada desgasificada - Acido cromosulfúrico(para limpiar el picnómetro) Preparación de la Muestra Los zumos turbios debe agitarse enérgicamente, de forma que el sedimento existente se reparta de manera homogenea. En el caso de bebidas carbonatadas, como por ejemplo la cerveza, se añaden 300 a 500 mL de muestra a un matraz de fondo plano de 1 000mL que se cierra y se agita durante el tiempo necesario para eliminar la sobrepresión, lo que se realiza abriéndolo de vez en cuando. A continuación, la muestra se pasa por un filtro de pliegues Determinación. a. Masa del Picnómetro Vacío 3.3. Protocolo para la determinación Picnométrica de la Densidad Relativa en Sistemas Alimentos
  • 67. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 69 LUIS ARTICA MALLQUI El picnómetro limpiado con ácido cromosulfúrico se lava varias veces con agua destilada y se seca cuidadosamente a temperatura ambiente(Si se calienta mucho, el volumen del picnómetro se verá alterado, lo que debe evitarse a toda costa). b. Después de poner el tapón marcado se deja reposar durante 15 minutos en la caja de la balanza y después se pesa con cuatro cifras decimales. Hay que realizar la medida de tres determinaciones. c. Masa del picnómetro lleno de agua c.1. Se llena el mismo picnómetro un poco por encima del enrrase con agua destilada recién hervida, se tapa y se deja durante 30 minutos en un baño maría de agua a 20°C. c.2. Con ayuda de un capilar se enrasa exactamente, es decir, se hace coincidir el borde inferior del menisco o superficie curvada del líquido con el enrase. c.3. A continuación, la parte vacía del picnómetro se seca de cualquier resto de agua con papel filtro, se coloca el tapón y después de sacarlo del baño maría se seca bien con un paño suave que no deje pelusas, se coloca en la caja de la balanza durante 30 minutos y se pesa con una
  • 68. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 70 LUIS ARTICA MALLQUI precisión de cuatro cifras decimales. Debe realizarse la medida de tres determinaciones. d. Masa del picnómetro lleno de la muestra d.1. El picnómetro lleno(ver c) se vacía y se lava cuidadosamente varias veces con pequeñas fracciones de la muestra problema(de 5 a 10 mL). Después de llenarlo con la sustancia problema ligeramente por encima del enrase, se sigue lo indicado en c. Cálculos La densidad relativa d 20/20 de la muestra se calcula en base a la siguiente relación: d 20/20 = m3 - m1 / m2 - m1 Donde: m1 Masa en g de picnómetro vacío m2 Masa en g del picnómetro lleno de agua a 20 1C m3 Masa en g del picnómetro lleno de la muestra problema a 20ºC.
  • 69. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 71 LUIS ARTICA MALLQUI 3.4.Determinación de la Materia Seca (Sustancia Seca) Se entiende por materia seca o sustancia seca de un sistema alimenticio a la suma de todos ls componentes no volátiles del mismo. Se incluye aquí fundamentalmente lípidos, carbohidratos, proteínas y cenizas. La materia seca o sustancia seca se determina generalmente por secado de la muestra y pesada del residuo o por medida de la refracción o de la densidad. La diferencia entre el contenido en sustancia seca y el 100% se denomina, no muy correctamente, contenido en agua. La determinación de la pérdida de humedad por medio de la elevación de la temperatura, eventualmente con utilización complementaria de vacío, es el método más antiguo para obtener el contenido en sustancia seca o el "contenido en agua" de un alimento(Matissek, Schnepel y Steiner; 1998). No obstante, antes de utilizar este proce dimiento deben estimarse las posibilidades de error y tener en cuenta los casos en que se puede aplicar. Por ejemplo, las sustancias volátiles como el ácido
  • 70. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 72 LUIS ARTICA MALLQUI carbónico, los alcoholes, los aceites etéreos conducen a valores de contenido en agua más elevados. Ademas más, el agua se forma también a través de reacciones químicas(por ej.., las reacciones de Maillard), que se determinará a la vez y que conducirá a un contenido acuoso mayor.. Este método sólo será aplicable poor tanto en el caso de alimentos que no sufran ninguna transformación duarnte el secado térmico. Por ello, es más exacto hablar de "residuo seco", "Sustancia seca" , "peso seco" o "Materia seca"(Steiner, etal., 1998). 3.5. Protocolo para la determinación Gravimétrica de la Materia Seca o Sustancia Seca. Aplicaciones - Alimentos en General Fundamento La muestra se seca directamente, o tras triturarla con arena de mar, en una estufa desecadora normalmente a 103 " 2 1C de temperatura(si se utiliza vacío basta con unos 70 1C) hasta pesada
  • 71. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 73 LUIS ARTICA MALLQUI constante, calculándose el residuo poor diferencia de peso. Procedimiento Aparatos y Materiales - Estufa desecadora (con vacío) - Pesasustancias hasta de 30 mm de altura, 50 mm de diámetro, con tapa - Cápsulas de vidrio/porcelana/aluminio de 60-80 mm de diámetro - Arena de mar lavada y calcinada(si es necesario) Determinación a. Secado directo a.1. La desecación variará dependiendo del tipo de material alimenticio y del tamaño de los fragmentos(entre 3 a 6 horas), aunque en cualquier caso debe continuarse hasta pesada constante. a.2. Por lo general, dependiendo de la pérdida de peso esperada(o del contenido en agua) y de la homogeneidad del material, se pesan exactamente de 1 a 10 g de muestra en un vidrio de pesada y se secan durante 3 horas en la estufa a 103º ± 2ºC. En el caso de los cereales y productos de molienda(por ej., harinas) se pesan exactamente unos 5 g de muestra y se desecan durante 1,5 horas a 130 1C. Se dejan
  • 72. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 74 LUIS ARTICA MALLQUI enfriar en una campana desecadora y se determina por pesada la pérdida por desecación. b. Pesada a vacío(Desecación al vacío) Los alimentos ricos en azúcares y grasa(por ej., queso, miel) para evitar reacciones secundarias causadas por el calentamiento por encima de 100 1C, se secan a presión reducida(al vacío) y a temperaturas más bajas(inferiores 70 1C) en una estufa a la que se aplica vacío. Para que la muestra no se compacte se mezcla con arena de mar. c. Secado tras trituración con arena de mar(Método de la arena de mar) En el caso de muestras difíciles de secar, en cuya superficie se formauna costra(ej., productos cárnicos, jarabes, productos lácteos, quesoo y similares), es necesario triturar el material con arena de mar para descompactarlo. Para ello, se llena el vidrio de pesada con unos 10 a 30 g de arena de mar y una pequeña varilla de vidrio, se seca en una estufa a 103 " 2 1C y finalmente se enfría en un desecador y se pesa(peso en vacío). Después de pesar exactamente 1-10 g de muestra, ésta se mezcla homogeneamente con ayuda de la varilla de vidrio. Hay que tener cuidado de que no salte ningún gránulo. Tras su secado hasta pesada constante(unas 2 a 3 horas), se enfría en la campana desecadora y se pesa.
  • 73. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 75 LUIS ARTICA MALLQUI Cálculos La expresión del contenido de sustancia seca o materia seca(SS) expresado como porcentaje se calcula en base a la siguiente ecuación: % SS = ( m3 - m1 / m2 - m1 ) . 100 Donde: m1 Peso en vacío del vidrio o pesasustancias(en caso necesario con arena de mar seca y varilla de vidrio) m2 Peso de la cápsula o pesasustancias(en caso necesario con arena de mar seca y varilla de vidrio) más la muestra antes del secado en g. m3 Masa de la cápsula o pesasustancias(en caso necesario con arena de mar seca y varilla de vidrio) en g más la muestra después del secado. (m2 - m1 ) = Peso de la muestra El "contenido de agua", expresado como porcentaje, H2O de la muestra se calcula según la ecuación siguiente: % H2O = 100% - % SS 3.5.1. Protocolo para Determinación Refractométrica de la Sustancia seca o Materia Seca. Aplicaciones - Miel
  • 74. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 76 LUIS ARTICA MALLQUI - Crema de azúcar invertido("miel artificial") El índice de refracción n se puede utilizar para la identificación de sustancias líquidas puras y para la caracterización de muestras alimenticias. Se determina por medio de un refractómetro. Fundamento El índice de refracción de una muestra alimenticia líquida o en su caso fundida se mide a 40 ºC y a partir de allí se calcula el porcentaje de sustancia seca o materia seca. Procedimiento Aparatos y Materiales - Refractómetro de Abbé con termostato - Pesasustancias - Varilla de vidrio Preparación de la Muestra La miel candi debe fluidificarse antes de la medida. Para ello se coloca en un pesasustancias cerrado dentro de una estufa a 50ºC y se enfría antes de abrir. Determinación Se coloca cuidadosamente una gota de muestra, fluidificada en su caso, con la varilla de vidrio formando una fina capa en el par de prismas abatible del refractómetro calentando a 40ºC y se cierra éste rápidamente para disminuir la
  • 75. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 77 LUIS ARTICA MALLQUI evaporación del agua. Al cabo de un minuto a 40 ºC se mide el ángulo límite y se lee el ángulo de refracción n. (Nota: La calibración del refractómetro se lleva a cabo con agua destilada a 40 ºC( n40 D = 1,3307). Calculos Para calcular la sustancia seca SS o materia seca resultan válidas las siguientes fórmulas empíricas: a) Para la Miel pura de abeja % SS = 78,0 + 390,7 . (n - 1,4768) b) Para la "Miel Artificial", más exactamente "crema de azúcar invertido" % SS = 78,0 + 378,0 . (n - 1,4756) 3.6.Determinación de Cenizas El concepto de residuo de incineración o de cenizas se refiere al residuo que queda tras la combustión(incineración) completa de los componentes orgánicos de un alimento en unas condiciones determinadas.. Una vez que se eliminan otras posibles impurezas y partículas de carbono procedentes de una combustión incompleta, este residuo se corresponde con el contenido en minerales del sistema alimenticio(Matissek, Schnepel, y Steiner; 1998).
  • 76. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 78 LUIS ARTICA MALLQUI La determinación de las cenizas proporciona un índice que se utiliza junto con otros para caracterizar y evaluar la calidad del sistema alimenticio. Así pr ejemplo, permite distinguir, entre otros, los distintos tipos de harina de cereales según su contenido en cenizas. Otra aplicación es el análisis de loos zumos de frutas a través de la determinación de la alcalinidad de las cenizas, en la que se determinan por separado los componentes alcalinos de las cenizas, tales como carbonatos y óxidos. Se diferencia la incineración seca(combustión) de la húmeda(mineralización).. Para la determinación de metales volátiles(por ej., mercurio) o de determinados no metales la más adecuada es la incineración seca. La incineración húmeda se lleva a cabo con una mezcla ácida o se realiza la mineralización por fusión con álcali. En la Incineración seca la temperatura debe ser de unos 550 ºC, porque al sobrepasarse loos 600 ºC se producen pérdidas de cloruros alcalinos(como cloruro de sodio). Excepción, las ceniz<as de harinas se obtienen a temperaturas superiores(900 ºC).
  • 77. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 79 LUIS ARTICA MALLQUI Aplicaciones - Alimentos en general Introducción El residuo por incineración directa de una muestra de alimento puede contener, además de las sustancias minerales del alimento, partículas de carbón procedentes de una combustión incompleta, o también impurezas del alimento(arena, arcilla); por ello este residuo se denomina también « ceniza bruta», o mejor «residuo de incineración». La «ceniza límpia» es la diferencia entre la ceniza bruta y el contenido en carbón e impurezas. Fundamento Se calcina/incinera la muestra(en caso necesario tras su desecación) a 550ºC en la mufla y se calcula el residuo de incineración por diferencia de peso. Procedimiento - Horno Mufla - Evaporador de superficie(lámpara infrarroja) 3.6.1. DETERMINACIÓN E INVESTIGACIÓN DEL RESIDUO DE INCINERACIÓN POR INCINERACIÓN DIRECTA(Contenido de Cenizas)
  • 78. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 80 LUIS ARTICA MALLQUI - Crisol de platino o de cuarzo - Varilla de vidrio - Papel de filtro libre de cenizas Reactivos - Disolución de peróxido de hidrógeno al 30%. Determinación a. Se calcina el crisol vacío y limpio en el mechero Bunsen, se enfría al aire, se coloca en un desecador y finalmente se pesa. b. La pesada de la muestra se realiza de acuerdo con la cantidad de ceniza esperada: ésta deberá ser al menos de 0,5g. Las muestras sólidas se utilizan directamente, pero las muestras líquidas y pastosas deben secarse antes en el evaporador de superficie. Debe tenerse cuidado de que la formación de gas o de vapor de agua no arrastre ninguna partícula del crisol. Para disgregar las costras se emplea una varilla de vidrio, que se limpiará a continuación de las posibles partículas que hayan quedado adheridas con trocitos de papel de filtro libre de cenizas. Estos trocitos de papel se añaden al crisol y se incineran junto con la muestra.
  • 79. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 81 LUIS ARTICA MALLQUI La muestra(desecada en su caso) se calienta moviendo el crisol cuidadosamente sobre la llama opaca del mechero Bunsen hasta que ya no se produzca hinchamiento. A continuación, se coloca el crisol en el horno mufla a 550 ± 25ºC y se incinera durante 1-3 h hasta pesada constante, es decir, hasta que la ceniza aparezca blanca. Si la ceniza no se vuelve blanca, se enfría el crisol y se humedece con unas gotas de agua destilada o de disolución de peróxido de hidrógeno y las porciones carbonizadas se aplastan con la varilla de vidrio. Esta se limpia como se explicó más arriba. A continuación se repiten la desecación y la incineración. Finalmente se deja enfriar el crisol colocándolo sobre una superficie refractária y se pesa después de un enfriamiento en el desecador. Cálculos El Porcentaje de residuo de incineración(contenido de cenizas)C se calcula como sigue:
  • 80. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 82 LUIS ARTICA MALLQUI % C = ( m2 - m1 / P ) . 100 En donde m1 Masa en g del crisol vacío m2 Masa en g del crisol con la muestra tras la incineración. P Peso de la muestra en g. 3.7.Determinación del Tipo de Harina de Cereal Aplicaciones - Harinas de cereal, cereales Introducción En los cereales, la mayor parte de los minerales se encuentran en la cubierta del grano(un 50% frente al 0,4% del endospermo).
  • 81. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 83 LUIS ARTICA MALLQUI Como el residuo de incineración(contenido en cenizas) representa una medida del contenido en cáscara de la harina y en virtud de ello de su grado de extracción, se utilizan para tipificar las harinas de cereales. Cuanto mayor sea la extracción, mayor será la cantidad de cáscara que se encuentre en la harina. El tipo de harina se obtiene a partir del porcentaje de residuo de incineración referido a sustancia seca multiplicado por un factor de 1.000(Matissek, Schnepel y Steiner, 1998). Fundamento La harina se carboniza primero en el mechero de Bunsen y a continuación se incinera a 900ºC. El residuo de incineración se obtiene por diferencia de pesada y se refiere a sustancia seca(obtenida según 3.5). Procedimiento Aparatos y Materiales - Ver 3.6.1. Reactivos - Etanol 95(vol) - Nitrato amónico Determinación
  • 82. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 84 LUIS ARTICA MALLQUI a. El crisol vacío y limpio se calcina a la llama del mechero Bunsen, se enfría al aire y se coloca en un desacador para su enfriamiento definitivo, pesándose a continuación con cuatro cifras decimales. b. Se pesan hasta la cuarta cifra decimal unos 5 g de harina(molienda) cuidadosamente mezclada, se humedecen con 1-2 mL de etanol(para evitar que se levante polvo, con la consiguiente pérdida de sustancias) y se coloca en la boca del horno mufla calentando a 900±10ºC. Una vez que la harina se ha quemado o carbonizado con una llama viva, el matraz se empuja dentro de la mufla y se calcina durante 60-90min. c. La incineración se considera terminada cuando el residuo aparezca completamente blanco. Si todavía se pueden apreciar partículas negras de sustancias sin incinerar, el residuo se humedece y se procede como se describe en en 3.6.1. En lugar de ello, se puede añadir al residuo una vez enfriado un poco de nitrato amónico(que se descompone térmicamente) y se sigue incinerando. d. Una vez terminada la incineración, se deja enfriar el crisol colocádolo en una superficie que no se queme y, tras su enfriamiento definitivo en el desecador, se pesa hasta la cuarta cifra decimal. La pesada debe realizarse lo más rápidamente posible debido a la higroscopisidad del residuo. Cálculos
  • 83. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 85 LUIS ARTICA MALLQUI El residuo de incineración(contenido en cenizas) de la harina secada al aire se calcula con la ecuación que se indica bajo el epígrafe 3.6.1. El tipo de harina H se calcula a partir del residuo de incineración C de acuerdo con la siguiente igualdad y se refiere a sustancia seca: C . 100 H = ________________. 1.000 ( 100 - A) Siendo C % de residuo de incineración A % en agua de la muestra 3.8.CONTENIDO EN FIBRA BRUTA Y DIETÉTICA Se denomina fibra dietética a aquellos componentes de hojas, frutos o raices dificiles o imposibles de utilizar por el organismo humano. Se trata sobre todo de compuestos vegetales, es decir, compuestos poliméricos fibrosos(celulosas, hemicelulosas, pectinas) y ligninas(polimeros de fenilpropano), y también CALCULOS
  • 84. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 86 LUIS ARTICA MALLQUI lípidos(ceras, cutina) y en parte elementos traza en compuestos no absorbibles(Matissek, et al., 1998). Puesto que el organismo humano carece de un sistema enzimático que degrade estos polímeros, la fibra dietética aparece inalterada en el intestino grueso(colon) y ejerce una acción reguladora del peristaltismo y por lo tanto de reabsorción de otros nutrientes que sí son absorbibles. Gracias a sus propiedades, la fibra dietética afecta también favorablemente al metabolismo de los ácidos biliares porque se une a las sales biliares aumentando así su eliminación. Al contrario que la fibra dietética, la fibra bruta es un término que describe exclusivamente una magnitud analítica. 3.8.1. Determinación de la Fibra Bruta Según Scharrer - Kürschner Aplicaciones - Alimentos de origen vegetal Introducción El término de «fibra bruta»se aplica al residuo libre de
  • 85. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 87 LUIS ARTICA MALLQUI cenizas que queda tras un determinado tratamiento de un producto vegetal. En dicho tratamiento se utilizan lejías y ácidos o también mezclas de estos últimos. La composición de la fibra bruta depende sobre todo de la capacidad del compuesto utilizado en el tratamiento para disolver cada componente de la pared celular(celulosa, pentosanos, pectinas, lignina). En el procedimiento de Scharrer y Krschner que describimos aquí, la lignina se solubiliza por oxidación o nitración, de manera que se obtiene por lo general una fibra bruta sin lignina y con pentosanos. Si se utilizara un tratamiento diferente, la composición del residuo sería distinto. Por lo general, el contenido de fibra bruta no constituye un índice absoluto; sirve más bien como indicación de la cantidad de compuestos no aprovechables por el organismo que existe en un alimento, por ejemplo comprobar el porcentaje de cáscaras en derivados de cereales y en el cacao. En la práctica el contenido de fibra bruta se utiliza por tanto fundamentalmente para evaluaciones de la calidad(Matissek, Schnepel y Steiner; 1998). Fundamento El material a investigar una vez triturado y en su caso
  • 86. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 88 LUIS ARTICA MALLQUI desengrasado, se trata con una mezcla ácida, se filtra, el residuo se lava con etanol y éter, se seca y se pesa. Después de incinerado, se resta el contenido en cenizas del peso que se había obtenido. Procedimiento Aparatos y Materiales - ver 3.6.1.; además: - Refrigerante a reflujo con esmerilado. - Probeta de 100 mL - Matraz de fondo plano de 250 mL con esmerilado - Embudo de vidrio y papel de filtro libre de cenizas o crisol fritado(placa filtrante de vidrio o de cuarzo de 50mL), kitasato y bomba de vacío. - Pesasustancias - Papel indicador de pH Reactivos - Mezcla ácida: Disolver 25 g de ácido tricloroacético en 500 mL de ácido acético 70%, mezclar con 124 mL de ácido nítrico 65% y completar hasta 1 L con ácido acético 70% - Etanol 96%(vol)
  • 87. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 89 LUIS ARTICA MALLQUI Eter etílico(intervalo de ebullición 34-35ºC) Eter de petróleo(intervalo de ebullición 30-60ºC) Determinación a. Tratamiento Previo Si la muestra tiene mucha grasa deberá desengrasarse antes de pesarla lavándola 2-3 veces con éter de petróleo, que se elimina decantando; el resto del disolvente se deja evaporar. b. Tratamiento Pesada: depende del contenido de fibra bruta (3- 20g). La muestra se pesa exactamente, se pesa al matraz de fondo plano y se mezcla con 80 mL de mezcla ácida(primero se añaden sólo 60 mL, se agita enérgicamente el matraz y se lava la pared interior con los 20 mL restantes). Se calienta a reflujo durante 30 min y a continuación se enfría al aire primero después bajo el agua corriente. El papel libre de cenizas se seca durante 1 h a 103±2ºC, se enfría en el desecador y se pesa exactamente. Dependiendo de la muestra, el
  • 88. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 90 LUIS ARTICA MALLQUI contenido del matraz se pasa por el papel de filtro previamente pesado o por un crisol filtrante con ayuda de un kitasato y de vacío. El matraz se enjuaga con agua caliente, con la que deberá lavarse el papel de filtro libre de ácidos(Control con papel pH); el Kitasato se vacía varias veces, porque si no el ácido acético muy volátil reduce el vacío y retarda el lavado. A continuación, se lava el residuo tres veces con 10 mL de etanol y dos veces con 10 mL de éter etílico. El papel de filtro con el residuo se pasa a un crisol previamente pesado y se seca durante 1 h a 103± 2ºC, se enfría en el desecador y se pesa exactamente. c. Incineración Después de una incineración preliminar, el papel de filtro junto con el residuo se incinera durante 1 aprox. A 700ºC; finalmente se pesan las cenizas(ver. 3.6.1.) Cálculos El porcentaje de fibra bruta F se calcula en función a la siguiente relación: ( m1 - mf ) - m2 %F = ------------------------ . 100 M
  • 89. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 91 LUIS ARTICA MALLQUI Donde: m1 Peso tras el tratamiento, es decir, residuo + papel de filtro en g. mf Peso del papel de filtro seco en g(si se lleva a cabo en ensayo en blanco de la nota, se utiliza como mf el peso del papel de filtro tratado con los reactivos). m2 Peso después de la incineración, es decir, peso de las cenizas en g. M Peso de la muestra en g. El peso de fibra bruta(m1 - mf) debe estar entre 60 - 200 mg; en caso contrario la determinación deberá repetirse con una cantidad de muestra distinta más adecuada. 3.8.2. Determinación de la Fibra Dietética Orgánica Insoluble Aplicaciones - Alimentos a base de Cereales. Introducción La fibra dietética orgánica insoluble corresponde al
  • 90. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 92 LUIS ARTICA MALLQUI residuo libre de cenizas que queda después de un tratamiento con una disolución detergente neutra y α- amilasa. En cuanto el procedimiento, es análogo a la determinación descrita en 3.8.1. para la fibra bruta. No obstante, como las condiciones de trabajo son otras, el residuo no tendrá la misma composición. En el procedimiento que indicamos aquí no se obtiene fibra dietética soluble como pectina, etc., sino sobre todo celulosa, hemicelulosa insolubles y lignina. Fundamento La muestra se desmenuza, se desengrasa si es necesario, se trata con disolución detergente neutra y α-amilasa y se filtra. El residuo se seca y se incinera a 500 - 520ºC. El contenido en fibras dietética insoluble se obtiene por diferencia de pesada antes y después de la incineración. Procedimiento Aparatos y materiales - Ver 3.8.1. - Probeta de 1000 mL. - Pipeta aforada de 10 mL. Reactivos - Disolución detergente Neutra
  • 91. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 93 LUIS ARTICA MALLQUI - Disolución parcial A: se disuelven 6,8g de tetraborato disódico 10-hidratado y 4,6g de hidrógenofosfato disódico(anhidro) con 222mL de agua destilada caliente y se mezcla con 19,7 g de EDTA(sal disódica dihidratada del ácido etilendiamino tetraacético). - Disolución Parcial B: se disuelven 30,0g de dodecilhidrogenosulfato sódico en 778 mL de agua destilada. Las disoluciones A y B se mezclan cuidadosamente con 10 mL de monoetiléter. Al cabo de 24 h se controla el pH y en caso necesario se ajusta a 6,9 - 7,1. (si se conservan a temperatura inferior a 20ºC, el detergente precipita; se redisuelve calentando a 60ºC aprox.). - Disolución de amilasa. Se disuelven 2 g de α-amilasa(de Bacillus subtilis, de 50 a 100 U/mg) en 90 mL de agua destilada, se filtra por un papel de filtro y se mezcla con 10 mL de monoetiléter del etilenglicol(se conserva unas 4 semanas a 4ºC). - Disolución de Yodo 0,05 mol/L
  • 92. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 94 LUIS ARTICA MALLQUI - Acetona - Eter de petróleo(intervalo de ebullición Determinación a) Tratamiento Previo Ver 3.8.1. b) Tratamiento Se colocan en el matraz de fondo plano 0,5 g de la muestra triturada y se mezclan con 50 mL de disolución detergente, calentándose a reflujo durante 30 min. A continuación, las paredes del matraz se lavan con otros 50 mL de detergente neutro para limpiar los posibles fragmentos de fibra, utilizándose si es necesario una varilla provista de una goma, y después de añadir 2 mL de la disolución de amilasa se calienta a reflujo durante 60 min. Dependiendo del tipo de muestra, el contenido del matraz se pasa por un papel de filtro libre de cenizas previamente desecado y pesado o a través de un crisol fritado desecado y exactamente pesado. El residuo se lava con agua destilada caliente
  • 93. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 95 LUIS ARTICA MALLQUI hasta que el filtrado ya no haga espuma. Después se deja reposar el residuo con 30 mL de agua destilada a 80ºC y 2 mL de disolución de amilasa(el tubo de salida del embudo se cierra con un tapón) y finalmente se deja salir el líquido. Si al añadir 1-2 gotas de la disolución de yodo aparece sobre el residuo una coloración azul violeta, la degradación del almidón todavía no será completa: en este caso habrá que repetir el experimento. El residuo se lava dos veces con 30 mL. de agua destilada hirviendo y tres con 15 mL de acetona. El crisol fritado o el papel de filtro con el residuo se secan durante la noche a 103± 2ºC en un crisol previamente pesado, se enfrían en un desecador hasta temperatura ambiente y finalmente se pesan. c. Incineración. Después de una incineración preliminar del residuo seco se lleva a cabo la incineración a 500 - 520ºC; a continuación se pesan las cenizas(3.6.1.). Calculos El porcentaje de fibra dietética orgánica insoluble F se
  • 94. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 96 LUIS ARTICA MALLQUI calcula con la siguiente relación: ( m1 - m2 ) %F = ----------------- . 100 M Donde: m1 Peso tras el tratamiento, es decir del residuo en el papel de filtro o crisol fritado tras el secado. m2 Peso después de la incineración, es decir, del residuo en g M Peso de la muestra en g 3.9. Métodos de Determinación del Contenido de Grasa de los Alimentos. La determinación cuantitativa del contenido graso de un alimento se realiza por lo general por extracción con un disolvente lipófilo. La grasa libre se determina por extracción directa, mientras que la denominada grasa total incluye tanto la «grasa libre» como la ligada y las sustancias acompañantes solubles en disolventes orgánicos debido al tratamiento ácido empleado.
  • 95. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 97 LUIS ARTICA MALLQUI 3.9.1. Extracción Directa: Método Soxhlet Aplicaciones -Alimentos en general, aunque conexcepción de aquéllos en los que la grasa está cubierta(por ej. En los productos lácteos) - Obtención de la fracción de grasa libre de la muestra para su posterior caracterización Fundamento La muestra anhidra se extrae con éter dietílico y con éter de petróleo y después se determina gravimétricamente el extracto seco, del que se habrán eliminado los disolventes. Procedimiento Aparatos y Materiales - Baño de agua(hasta punto de ebullición) - Dispositivo de extracción de Soxhlet Con matraz de 250 mL y refrigerante de reflujo - Cartuchos de extracción - Guata(libre de grasa)
  • 96. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 98 LUIS ARTICA MALLQUI - Perlas de vidrio Reactivos - Éter dietílico: intervalo de ebullición 34-35 ºC, libre de peróxidos - Éter de petróleo : Intervalo de ebullición 40-60 ºC - Sulfato sódico anhidro Determinación a. Se pesan unos 5-10 g de muestra homogeneizada con una precisión ± 1 mg, y en su caso desecada, en un cartucho de extracción libre de grasa y se coloca éste, tras ser cerrado con guata, en la pieza media del dispositivo de extracción de Soxhlet. El matraz de fondo plano secado a 103 ± 2 ºC, exactamente pesado, provisto de las perlas de vidrio se llena con una cantidad suficiente de disolvente y se acopla al dispositivo. Durante la extracción, que tiene lugar al baño maría y dura 4-6 horas, debe vaciarse regularmente el espacio de extracción, es decir, la pieza media del dispositivo,
  • 97. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 99 LUIS ARTICA MALLQUI a través del conducto ascendente(unos 20-30 vaciados). b. Al finalizar la extracción se sigue destilando el disolvente. Para ello puede utilizarse directamente el dispositivo de Soxhlet: El disolvente que se va condensando debe recogerse en el recinto de extracción de tal manera que la superficie del líquido no rebose el nivel del conducto ascendente y desemboque en parte en un recipiente de recogida. A continuación el matraz se coloca durante una hora en una estufa a 103 ± 2 ºC, con lo que se eliminan del residuo los últimos restos de disolvente. El matraz se pesa tras enfriarse en un desecador. Cálculos: El porcentaje de grasa G se calcula de acuerdo con la siguiente relación matemática:
  • 98. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 100 LUIS ARTICA MALLQUI m2 - m1 %G = ----------------------------------- . 100 M Donde: m1 Masa en g del matraz redondo/de fondo plano(con perlas de vidrio) m2 Masa en g del matraz con grasa tras el secado M peso de la muestra en g
  • 99. BROMATOLOGIA APLICADA: Fundamentos, métodos y aplicaciones 101 LUIS ARTICA MALLQUI Acidez en Sistemas Alimenticios La acidez titulable indica el contenido total de ácidos presentes en la muestra alimenticia y se expresa en porcentajes, generalmente en función del ácido orgánico que predomina en el sistema, pro ej. En la leche, se tiene el ácido láctico, en las naranjas el ácido cítrico, en las manzanas el ácido málico, en las uvas el ácido tartárico. 4.1. Origen de los Ácidos Orgánicos en los Sistemas Alimenticios El primer paso para predecir la acidez en un sistema alimenticio fresco o procesado consiste en identificar cuales son sus principales constituyentes y sus proporciones relativas respecto al agua contenida en dicho sistema alimenticio. Tal como se muestra en la figura 6 podemos considerar que un sistema alimenticio es una "mezcla" acuosa más o menos homogénea(o heterogénea) de varios Constituyentes(biopolímeros, azúcares, sales orgánicas e inorgánicas, etc.) que pueden variar en cantidad y calidad en función de factores tales como clima, suelo, variedad, condiciones de procesamiento, etc. CAPITULO IV
  • 100. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP El agua es por lejos el principal constituyente de los sistemas alimenticios frescos constituyendo entre el 75-95% del peso de los mismos. La acidez de los sistemas alimenticios está determinada por la naturaleza y concentración de las especies químicas o principios inmediatos. Los sistemas alimenticios vegetales, como son las verduras y las frutas, contienen cierto número de ácidos orgánicos, productos metabólicos de las células. A continuación se presentan las fórmulas para los ácidos orgánicos más importantes que predominan en las mismas: O H — C — OH Acido Fórmico(Metanoico) PM = 46
  • 101. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 104 H | H — C — COOH | HO — C — COOH | H — C — COOH | H ACIDO CÍTRICO PM = 192 L(+) (Frutas)
  • 102. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 105 H | H — C — COOH | HO — C — COOH | H Acido Málico (Hidroxisuccinico) PM = 134 L(+) (Manzana)
  • 103. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 106 H | H — C — COOH | HO— C — COOH | OH Ácido Tartárico(2,3-dihidroxisuccinico) PM = 150 L(+) (Uvas) (butanodioldioco)
  • 104. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 107 H | H — C — COOH | H — C — COOH | H Acido Succínico(butandioico) PM = 118 (Lechuga)
  • 105. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 108 H | C — COOH ║ C — COOH | H Acido Fumárico(butendioico) PM = 116 (alomaleico, bolético)
  • 106. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 109 H | H — C — COOH | C — COOH ║ C — COOH | H Acido Aconítico(aquileico,citrídico) PM = 174 (Vegetales)
  • 107. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 110 COOH | H — C — H | H Acido Acético (etanoico) PM = 60 (Vinagre) COOH | COOH Acido Oxálico (etandioico) PM = 90 (Espinaca, remolacha)
  • 108. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 111 COOH | HO — C — H | H — C — H | H Acido Láctico(2-hidroxi-propiónico) PM = 90 La mayoría de los sistemas alimenticios contienen ácidos orgánicos, los que pueden ser el producto de: a. Presencia natural, inherente a la composición química del sistema alimenticio. b. Metabolismo de los microorganismos, los que pueden ser agregados intencionalmente para producir ciertos efectos deseables, como en la fermentación láctica, acética. c. Adición Voluntaria, ya sea con fines de protección contra los microorganismos indeseables durante el transporte, almacenaje o procesamiento, como el ácido sórbico, benzoíco; para inhibir reacciones bioquímicas como el empardeamiento enzimático; para ajustar el alimento a los parámetros requeridos para su procesamiento(mermeladas, néctares, etc.).
  • 109. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 112 4.2. Métodos de Determinación 4.2.1. Por Titulación Con Alcalis Con NaOH(0,1N) ó 0,5N en presencia de fenolftaleína como indicador(8,3 - 10) o azul de bromotimol(6,0 - 7,6). El contenido de acidez en el sistema alimenticio se expresa generalmente en función al ácido predominante: - mL de álcali 0,1N / 10 g de muestra - % de Acidez El procedimiento que se sigue para determinar la acidez titulable en sistemas alimenticios, esta en función a la naturaleza reológica del mismo. Alimentos líquidos en alicuota; alimentos viscosos en dilución y Alimentos sólidos, previa extracción de los ácidos mediante la molienda, trituración, centrifugación y filtración. 4.2.2. Etapas de la Determinación de la Acidez Titulable. a) Preparación de la Muestra Acondicionar la Muestra, si es sólida, TRITURAR.
  • 110. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 113 b) Extracción de los Acidos Cuando son materiales alimenticios bajos en lípidos, los ácidos se extraen con agua destilada libre de CO2 Cuando son materiales alimenticios altos en lípidos, se extrae con una solución de etanol 90° neutralizada con NaOH, la muestra se filtra luego centrifuga. c) Titulación Luego de centrifugar la muestra, se toma una alicuota a la que se agrega 2 a 3 gotas de fenolftaleína y se titula con NaOH 0,1N. c) Cálculos: G . N . Meq %Acidez = ------------------------ x 100 M Donde: G = Gasto del álcali en la titulación de la muestra. N = Normalidad del álcali M = g o mL en la Alicuota Meq = Mili equivalente en gramos del ácido predominante
  • 111. BROMATOLOGÍA APLICADA LUIS ARTICA MALLQUI UNCP 114 4.2.3. Titulación Potenciométrica El principio se basa que durante la titulación se alcanza el pH de 8,2 - 8,3 y a este pH se determina con el proceso de titulación, anotándose el gasto de la titulación. 4.3. Factores que Afectan La Determinación de la Acidez Titulable a. Presencia de CO2 - Altera los resultados de la titulación - NaOH + CO2 = CO3Na2 - Se recomienda usar agua destilada libre de CO2 . b. Presencia de Compuestos Oscuros Dificulta apreciar el cambio de color a rosado. Se recomienda en estos casos diluir la muestra hasta obtener un color menos oscuro o decolorar con carbón activado al 1%. Si es muy difícil aclarar la muestra, es mejor determinar con etanol 90°, neutralizando con NaOH. C. Presencia de Grasa Los Lípidos dificulta, Extraer con alcohol o neutralizar con NaOH