VMT Food Event 160310 Toepfl

2,091 views
1,913 views

Published on

Presentation of Prof.Dr.Ing. Stefan Toepfl, Manager Process Development Division of DIL - German Institute of Food Technologies

Innovative Food Processing Technologies - preservation and structural modification of food products by innovative processes

Improvement of efficiency and increase of competitiveness of companies from the food industry

Published in: Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,091
On SlideShare
0
From Embeds
0
Number of Embeds
30
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

VMT Food Event 160310 Toepfl

  1. 1. Innovative Food Processing Technologies - preservation and structural modification of food products by innovative processes Stefan Töpfl
  2. 2. Facts and Figures Institute FOUNDED IN. 1983 LEGAL FORM. Registered association (e.V.) EXECUTIVE DIRECTOR. Dr.-Ing. Volker Heinz MEMBERS. Approx. 113 member companies (53 of them from Lower Saxony) EMPLOYEES. Approx. 117 BUDGET 2009. Approx. 6.5 million Euro OBJECTIVE. Improvement of efficiency and increase of competitiveness of companies from the food industry MISSION MISSION INNOVATION – Knowledge for superior foods
  3. 3. Market development Food industry DIL
  4. 4. DIL e.V. Member companies
  5. 5. Organization New structures DIL BUSINESS FIELDS. DIL RESEARCH PLATFORM. Providing services for the industry Determination of scientific findings, also on behalf of direct clients. independently from industrial clients. Development of innovative approaches with the ambition to implement them into attractive products and efficient processes for the industry.
  6. 6. Business Field Process Development Support of the industry with new production processes Focus of development: Pulsed electrical fields Extrusion High pressure Ultrasonic/shock waves technology Application of supercritical fluids Increased competitiveness through efficiency improvements of the production processes used, e.g. by improved energy management, automation or application of novel technologies on material conversion. Quelle Fotos: DIL,
  7. 7. Pulsed Electric Fields Processing
  8. 8. Pulsed Electric Fields Applications
  9. 9. PEF treatment of plant tissue Quantification of relevant interactions – technical scale 80 70 60 50 juice yield [%] 40 30 20 10 0 JonaGold 2 kJ/kg 10 kJ/kg 20 kJ/kg enzyme JG + GD 5 kJ/kg 10 kJ/kg 15 kJ/kg enzyme control control Impact of PEF-treatment (2 kV/cm) on Jona Gold (JG) and Golden Delicious (GD) juice yield using a decanter centrifuge. Juice yield including an eventual transition of solids to juice
  10. 10. PEF treatment of plant tissue Application to key elements – pretreatment 10 t/h installation in German fruit juice company Premium cloudy juice production, using continuous belt press yield increase + 4 to 6 % in comparison to untreated Subsequent enzymatic maceration yield increase + 0 to 2 % Shift to higher production of premium quality first press Energy input: 4 to 6 kJ/kg Kea-Tec Electroporator (Müller et al. 2007)
  11. 11. Separation: PEF treatment of plant tissue Anthocyanin and polyphenol extraction from grapes Lopez et al. 2008
  12. 12. Electrifying microbes… Cell membrane permeabilization Loss of cytoplasma Loss of vitality Treatment conditions Electric field 30 kV/cm Peak current 500 A Pulse repetition ~ 100 Hz
  13. 13. Application of Pulsed Electric Fields Gentle Juice Preservation Inactivation of different microorganisms 0 0 0 0 35°C -1 -1 -1 -1 45°C 55°C -2 -2 -2 -2 -3 -3 -3 -3 lg (N/N0)[-] -4 -4 -4 -4 -5 -5 -5 -5 -6 -6 -6 -6 E. coli L. innocua S. cerevisae B. megaterium -7 -7 -7 -7 0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120 -1 Specific Energy [kJ kg ] Inactivation of E. coli, L.innocua, S. cerevisae and B. megaterium in ringer solution with an electrical conductivity of 1.25 mS cm-1 after PEF treatment with graphite anode and a field strength of 16 kV cm-1
  14. 14. Integration of temperature-time-profile Evaluation of thermal and PEF effects Determination of c-value 3.5 log-cycle of E. sakazakii Thermal inactivation tx N ∫ − k(T(t))dt (t ) = e 0 N0 k = e a ⋅T - b Product deterioration t T − Tref c - value = ∫ 10 z dt 0
  15. 15. E. sakazakii Comparison to thermal portion of inactivation L. monocytogenes 15s Protective effect in comparison to Ringer solution (dotted lines)
  16. 16. 5 and 30 kW systems Capacity up to 15 t/h Rectangular pulses, bipolar Peak voltage 25 kV Pulse width 4 to 30 µs Pulse repetition 0 to 1.000 Hz Detection of peak voltage and current Titanium electrodes Al2O3 insulator
  17. 17. „Gentle killing“ of bacteria untreated: total aerobic count untreated: yeats and molds 6 10 untreated: Lactic acid bacterie treated: total aerobic count 5 10 treated: yeasts and molds Microbial count (cfu/ml) treated: Lactic acid bacteria 4 10 3 10 2 10 1 10 detection limit 0 10 0 2 4 6 8 10 12 14 16 18 20 22 Storage time (days) Shelf life increase of fresh, non-pasteurized smoothies and other heat sensitive media
  18. 18. High Pressure Processing
  19. 19. microbes starch Inactivation Swelling tissue Disintegration lipids Transition proteins Unfolding
  20. 20. High Pressure Processing Quantification of relevant interactions
  21. 21. Industrial HPP Equipment Installations 128 Oceania Meat products 30% Asia 112 Europa Vegetable products America 35% 93 Total 79 71 64 Seafood and fish 49 16% 37 31 Juices and Other products 28 beverages 6% 12% 19 8 21 11 7 7 11 10 6 9 7 7 7 7 8 6 3 3 0 5 7 7 5 3 3 4 3 1 5 1 1 2 2 1 2 2 1 3 0 1 1 1 2 1 3 1 To 20 20 ta 1 20 08 20 l 07 20 06 1 20 05 2 20 04 03 20 1 02 20 1 01 19 1 00 19 99 19 98 19 97 19 96 19 128 equipments used by 61 companies 95 19 94 19 93 19 92 19 91 Total production in 2008 : ~180 000 tons 90 Source: Carole Tonello, NC Hyperbaric
  22. 22. Product Examples
  23. 23. Anaerobemikr. GKZ unbehandelt Anaerobemikr.GKZ behandelt 7 10 6 Treatment of Catfish 10 KBE/g 5 10 700MPa/ 1min 4 10 600MPa/5min 3 10 2 10 5 10 15 20 25 Tage Aerobemikr. GKZ unbehandelt 5x10 8 Aerobemikr. GKZ behandelt 7 5x10 6 5x10 5 5x10 KBE/g 4 5x10 3 5x10 2 5x10 2 10 5 10 15 20 25 Tage
  24. 24. Red and White Meat Change of turkey meat after 1 min at 0.1-500 MPa and 25°C. Ref. 100 200 300 400 500 MPa Change of chicken meat after 1 min at 0.1-600 MPa and 25°C. 25°C Ref. 100 200 300 400 500 600 MPa Change of pork meat after 1 min at 0.1-600 MPa and 25°C. Ref. 100 200 300 400 500 600 MPa
  25. 25. High pressure treated chicken fillet 6000 bar, 5min Shelf life > 30 days 8 10 Aer total count untreated 7 10 Aer total count treated Lactic acid bactuntreated 6 Lactic acid bacteria treated 10 Enterobact untreated Enterobact treated 5 Pseudomonas untreated CFU/g 10 Pseudomonas treated 4 10 3 10 2 10 5 10 15 20 25 30 Storage time [d]
  26. 26. Adaptation of marinade recipe Impact of marinade pH on lightness Potential to avoid discoloration 40 35 30 25 d L*(D65) (%) 20 pH 4.2 sauer 15 pH 5.7 Standard 10 pH 7.5 basisch 5 0 -5 -10 marination nativ-mariniert after HPP mariniert-HP native/HPP nativ-HP
  27. 27. Liver sausage
  28. 28. Liver sausage
  29. 29. Cold processed liver sausage •Time and energy saving •No cooking loss •Fresher product •No nitrite added
  30. 30. High pressure MDM turkey sausages Cutting Filling Smoking HPP Ingredients Weight Raw materials: Turkey MDM meat 6.000 kg Ice 2.000 kg Extenders: Wheat fibre 160 g Additives: Nitrite curing salt 120 g Phosphate 18 g Ascorbic acid 30 g Seasonings 50 g Monosodium 30 g glutamate (E-621)
  31. 31. Firmness and benefits of HP-treated sausages 120000 •Low-cost, safe product 100000 80000 •Saving time and energy Firmness [Pa] 60000 40000 •No cooking – no drip loss 20000 0 thermal treated HP- treated •Reduced salt content
  32. 32. Cold production of pork chop (Kassler) Pickling/Curing Tumbling Smoking High pressure treatment HPP Product
  33. 33. Cold production of pork chop (Kassler) • Cold processing – no heat • Saving energy • Saving time • No cook loss, no cooking damage HPP Product
  34. 34. 55l technical scale system 600 MPa ambient
  35. 35. ECONOMIC MODEL FOR READY-TO-EAT PRODUCTS Calculations: •including depreciation (5 years, 280 days/year, 16 h/day), wear parts and energy costs •based on a processing time of 3 min at 600 MPa (6000 bar) Vessel Total Energy Processing Vessel Vessel Production MODEL filling ratio cycle time Consumption cost Diameter Volume capacity per hour € per kg 6000/55 200 mm 55 l 43 % 9,1 min 150 Kg /h 14 KWh 0,221 €/kg 6000/135 300 mm 135 l 50 % 10,3 min 400 Kg /h 30 KWh 0,167 €/kg 6000/300 300 mm 300 l 50 % 11,3 min 800 Kg /h 60 KWh 0,119 €/kg 6000/300T 2 x 300 mm 600 l 50 % 9,0 min 2000 Kg /h 150 KWh 0,103 €/kg 6000/420 380 mm 420 l 63 % 9,1 min 1750 Kg /h 105 KWh 0,076 €/kg
  36. 36. Shockwave Processing
  37. 37. Shockwave Processing Pressure-Time-Domain 1400 1200 1000 Pressure [MPa] HPST 800 600 Shock Industrial wave HPP 400 Ultra- sound 200 Gun 0 1,00E-07 1,00E-05 1,00E-03 1,00E-01 1,00E+01 1,00E+03 Time [s]
  38. 38. Shockwave Processing Shock generation Meat tenderization Oyster shucking GPa pressure, but µs timescale
  39. 39. Shockwave Processing Shock generation by electrical energy underwater discharge vs wire explosion
  40. 40. fest Soid fest/flüssig Solid/liquid flüssig [Schmelze] Liquid flüssig, erste Liquid, Lichtbögen an den first discharge Kontakten flüssig, Liquid, Kontaktlichtbögen, dischage Pinch Shockwave Processing flüssig, Liquid/vapour Metalldampf 10-103 kA/mm2, Tmax=30,000 K Metalldampf, Vapour,flüssig liquid Shock generation by wire explosion Metalldampf, Vapour, Wess Lichtbogen discharge Löffler, 2007 CORNELL 41
  41. 41. Shockwave Processing Semi-industrial prototype
  42. 42. Shockwave Processing Meat tenderization CONTROL: Magnification 7100X. Hydrodyne Processed: Early deboned Holstein beef Magnification 19500X. Early before TCS processing. Intact deboned Holstein beef after TCS myofibrils. processing. Claus et al. 2002
  43. 43. Shockwave Processing Meat tenderization Conventional 14 days maturation Shockwave 4 shot, 7 days maturation Shockwave 2 shot, 7 days maturation Shockwave 1 shot, 7 days maturation Shockwave 4 shots Shockwave 2 shot Shockwave 1 shot Control Cutting Energy (N) 0 100 200 300 400 500
  44. 44. Supercritical water processing
  45. 45. Supercritical water Phase diagram 300 280 260 supercritical 240 221bar 220 subcritical 374°C 200 critical point 180 Pressure (bar) 160 140 120 100 liquid 80 60 gas 40 20 0 0 100 200 300 400 500 Temperature (°C) Phase diagram of water
  46. 46. Supercritical water Properties
  47. 47. Supercritical water Applications
  48. 48. Supercritical water Pilot plant Water (hot) Pectin Water (cold) • Separation of flows • Dosage of solutions • Quick cool-down • Defined heating duration
  49. 49. Supercritical water Pilot plant Pectin solution Water Reactor V = 16 ml Treated OGA-solution Membrane pumps
  50. 50. Supercritical water Results – Size exclusion chromatography Mono OGAs Pectin
  51. 51. Supercritical water Impact of pressure DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP2 En DP3 En DP4 En DP5 En DP6 En DP7 En 200°C/ 200bar 200°C/ 170bar 200°C/ 130bar 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% DP: Degree of polymerization, En: Unsaturated OGA
  52. 52. Supercritical water Impact of temperature DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP2 En DP3 En DP4 En DP5 En DP6 En DP7 En 240°C/ 200bar 230°C/ 200bar 220°C/ 200bar 210°C/ 200bar 200°C/ 200bar 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% DP: Degree of polymerization, En: Unsaturated OGA
  53. 53. OGA´s hydrolysed by SCW Inhibition of adhesion 100 93,7 84,3 Inhibition % Toxicity in % 80 65,0 60 54,8 48,5 [%] 40 36,5 37,1 33,3 22,5 20 8,5 46,6 5,2 -16,0 0 V12.1, 258°C V25.1, 247°C V3.2, 227°C V38.2, 210°C V54. 198°C V55, 185°C -20 Adhesion Inhibition in Caco2 Cell Culture Model
  54. 54. Supercritical water Suitable processing area 280 260 240 OGA supercritical Non- formation 221bar 220 hydrolysed subcritical 374°C 200 pectin critical point 180 Pressure (bar) 160 140 120 100 liquid Total 80 hydrolysis 60 gas 40 20 0 0 100 200 300 400 500 Temperature (°C)
  55. 55. Conclusions Making use of driving forces other than heat product structure design and preservation is possible Dependent on product type and goal various techniques are available Their application allows product innovation, quality and safety improvement All techniques ready for industrial use, process and product development, test or rental equipment is available at DIL
  56. 56. Contact Agent for the Benelux Promatec Food Ventures BV German Institute of Food Technologies (DIL) Mark de Boevere Prof. Dr.-Ing. Stefan Toepfl Rootven 24a Professor-von-Klitzing-Str. 7 NL-5531 MB Bladel D-49610 Quakenbrueck Tel: +31 (0)497 33 00 57 Tel.: +49 (0) 5431 183 140 mark.deboevere@promatecfoodventures.com email: s.toepfl@dil-ev.de www.promatecfoodventures.com www.dil-ev.de

×