Dietze Aswc 2009 Final

  • 410 views
Uploaded on

 

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
410
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Two-Fold Service Matchmaking – Applying Ontology Mapping for Semantic Web Service Discovery /// ASWC’09, Shanghai, China, December 08, 2009 Stefan Dietze 1 , Neil Benn 1 , John Domingue 1 , Alex Conconi 2 , Fabio Cattatoni 2 1 Knowledge Media Institute, The Open University, UK 2 TXT eSolutions, Italy
  • 2.
    • Semantic Web Services (SWS) mediation
    • Two-fold matchmaking approach for SWS
    • Prototypical implementation & application
    • Conclusions
    Outline
  • 3. Introduction Semantic Web Services (SWS)
      • Formalisations of Web services in terms of capabilities (Cap) , interfaces (If) and non-functional properties (Nfp)
      • Capabilities: assumptions (Ass) and effects (Eff)
      • Use ontologies O (i.e. tuple of concepts C , instances I , properties P , relations R and axioms A)
      • Reference models e.g. OWL-S, WSMO, SAWSDL
    sws:WebService SWS.2 sws:WebService SWS.3 sws:WebService SWS.1 WebService WS.2 WebService WS.3 WebService WS.1
  • 4.
    • SWS discovery: matchmaking of capabilities of SWS e.g. :
    SWS matchmaking Issues sws:WebService SWS.2 sws:WebService SWS.3 sws:Request R.1 sws:WebService SWS.1 WebService WS.2 WebService WS.3 WebService WS.1 ? ?
  • 5.
    • SWS discovery: matchmaking of capabilities of SWS e.g. :
    • I.e., matching logical expressions
    SWS matchmaking Issues sws:WebService SWS.2 sws:WebService SWS.3 sws:Request R.1 sws:WebService SWS.1 WebService WS.2 WebService WS.3 WebService WS.1 has-assumption has-assumption
  • 6.
    • SWS discovery: matchmaking of capabilities of SWS e.g. :
    • I.e., matching logical expressions…
    • … which are heterogeneous.
    SWS matchmaking Issues sws:WebService SWS.2 sws:WebService SWS.3 sws:Request R.1 sws:WebService SWS.1 WebService WS.2 WebService WS.3 WebService WS.1 ? <Location rdf:ID=&quot;Milton_Keynes&quot;/> <geospatialLocation rdf:ID=&quot;M-K&quot;/> has-assumption has-assumption
  • 7.
    • SWS discovery: matchmaking of capabilities of SWS e.g. :
    • I.e., matching logical expressions…
    • … which are heterogeneous.
    • Requires: mediation between concepts/instances across heterogeneous SWS.
    SWS matchmaking Semantic-level mediation sws:WebService SWS.2 sws:WebService SWS.3 sws:Request R.1 sws:WebService SWS.1 WebService WS.2 WebService WS.3 WebService WS.1 Semantic-Level Mediation Mediation between heterogeneous semantic representations
  • 8.
    • Proposal:
      • SWS matchmaking as two-fold process
        • Semantic mediation via ontology (instance) mapping
        • Logical reasoning for matchmaking of capability/interface descriptions
    SWS matchmaking Two-fold process
  • 9.
    • Proposal:
      • SWS matchmaking as two-fold process
        • Semantic mediation via ontology (instance) mapping
        • Logical reasoning for matchmaking of capability/interface descriptions
    • Issues:
      • Traditional SWS matchmaking focusses on (ii)
      • Integration of (i):
        • Via manual mappings? - costly
        • Via exploitation of linguistic or structural similarities? - prone to errors
      • Representations allowing for implicit similarity-computation ?
    SWS matchmaking Two-fold process
  • 10.
      • Refining SWS ontologies through multiple “Mediation Spaces” (MS), i.e. multidimensional, vector spaces
      • Through MS ontology (extends SWS descriptions)
      • Concept C in SWS ontology O => Mediation Space MS / Instance I of C => member M (vector) in MS
    Semantic-level mediation Approach: instance similarity computation in shared MS
  • 11.
      • Similarity-computation between SWS instances => spatial distances in MS
      • e.g. Euclidean distance:
      • Common agreement at schema (i.e. MS) level
    Semantic-level mediation Approach: instance similarity computation in shared MS
  • 12. Similarity-based service matchmaking Implementation based on WSMO/IRS-III
    • Implementation: Web Service Modelling Ontology (WSMO) & SWS environment IRS-III
  • 13. Similarity-based service matchmaking Implementation based on WSMO/IRS-III
    • Implementation: Web Service Modelling Ontology (WSMO) & SWS environment IRS-III
    • WSMO Mediator: computation of similarities between given request (WSMO Goal, G 1 ) and set of x associated SWS ( SWS 1 ..SWS x ):
    • Limitation: suitability of service computed based on instance similarities (=> current work: integration into “real” two-fold matchmaking)
  • 14.
    • Uses representational approach (MS, similarity-based WSMO Mediator)
    • Retrieval of distributed video resources (provided within EU FP7 IP NoTube - http://notube.tv)
    • Keyword-based searches across Web services exposing video repositories
      • BBC Backstage (news feed) [ http:// backstage.bbc.co.uk / ]
      • BBC Programmes RDF [ http://api.talis.com/stores/bbc-backstage ]
      • Open Video [ http://www.open-video.org / ]
      • OU channel on YouTube [ http://www.youtube.com/ou ]
      • YouTube (mobile feed) [ http://www.youtube.com/ou ]
    • Similarity-based service discovery for given request
    Semantic mediation through MS Prototypical application
  • 15. Semantic mediation through MS Prototypical application SWS 1 : OU-youtube O 1 :Purp O 1 :Env SWS 2 : bbc-programmes O 2 :Purp O 2 :Env SWS 3 : open-video O 3 :Purp O 3 :Env SWS 4 : bbc-backstage O 4 :Purp O 4 :Env M 6 2 ={v 1 , v 2 } SWS 5 : mobile-youtube O 5 :Purp O 5 :Env MS 2 Environment Space MS 1 Purpose Space SWS 6 : get-video-request M 6 1 ={v 1, v 2 , v 3 } WS 1 : OU-youtube WS 2 : bbc-programmes WS 3 : open-video WS 4 : bbc-backstage WS 5 : mobile-youtube
  • 16. Semantic mediation through MS Prototypical application SWS 1 : OU-youtube O 1 :Purp O 1 :Env SWS 2 : bbc-programmes O 2 :Purp O 2 :Env SWS 3 : open-video O 3 :Purp O 3 :Env SWS 4 : bbc-backstage O 4 :Purp O 4 :Env M 6 2 ={v 1 , v 2 } SWS 5 : mobile-youtube O 5 :Purp O 5 :Env MS 2 Environment Space MS 1 Purpose Space SWS 6 : get-video-request M 6 1 ={v 1, v 2 , v 3 } WS 1 : OU-youtube WS 2 : bbc-programmes WS 3 : open-video WS 4 : bbc-backstage WS 5 : mobile-youtube
  • 17. Semantic mediation through MS Prototypical application SWS 1 : OU-youtube O 1 :Purp O 1 :Env SWS 2 : bbc-programmes O 2 :Purp O 2 :Env SWS 3 : open-video O 3 :Purp O 3 :Env SWS 4 : bbc-backstage O 4 :Purp O 4 :Env M 6 2 ={v 1 , v 2 } SWS 5 : mobile-youtube O 5 :Purp O 5 :Env MS 2 Environment Space MS 1 Purpose Space SWS 6 : get-video-request M 6 1 ={v 1, v 2 , v 3 } WS 1 : OU-youtube WS 2 : bbc-programmes WS 3 : open-video WS 4 : bbc-backstage WS 5 : mobile-youtube {(p 1 *information, p 2 *education, p 3 *leisure)} = CS 1 {(p 4 *resolution, p 5 *bandwidth)} = CS 2
  • 18. Semantic mediation through MS Prototypical application SWS 1 : OU-youtube O 1 :Purp O 1 :Env SWS 2 : entertain-youtube O 2 :Purp O 2 :Env SWS 3 : open-video O 3 :Purp O 3 :Env SWS 4 : bbc-backstage O 4 :Purp O 4 :Env M 6 2 ={v 1 , v 2 } SWS 5 : mobile-youtube O 5 :Purp O 5 :Env MS 2 Environment Space MS 1 Purpose Space SWS 6 : get-video-request M 6 1 ={v 1, v 2 , v 3 } WS 1 : OU-youtube WS 2 : entertain-youtube WS 3 : open-video WS 4 : bbc-backstage WS 5 : mobile-youtube
    • Requests (WSMO Goals) via AJAX-based UI
    • Consist of:
      • Input parameters: set of keywords
      • Assumption: defined through dynamically created instances (based on measurements describing purpose and environment)
    • Similarity-based SWS discovery based on WSMO mediator
  • 19. Demo SWS 1 : OU-youtube O 1 :Purp O 1 :Env SWS 2 : entertain-youtube O 2 :Purp O 2 :Env SWS 3 : open-video O 3 :Purp O 3 :Env SWS 4 : bbc-backstage O 4 :Purp O 4 :Env M 6 2 ={v 1 , v 2 } SWS 5 : mobile-youtube O 5 :Purp O 5 :Env MS 2 Environment Space MS 1 Purpose Space SWS 6 : get-video-request M 6 1 ={v 1, v 2 , v 3 } WS 1 : OU-youtube WS 2 : entertain-youtube WS 3 : open-video WS 4 : bbc-backstage WS 5 : mobile-youtube
  • 20.
    • Summary:
      • Two-fold approach: considering semantic-level mediation as implicit element of SWS matchmaking
      • Mediation approach based on (instance) similarity-computation
    • Issues:
      • Matchmaking purely based on instance similarities (=> current work: integration into “real” two-fold matchmaking)
      • Similarity-calculation requires overlapping MS and measurable quality dimensions
      • Additional representational effort => future work: evaluation
    Conclusions Summary & discussion
  • 21. Thank you!
    • E-mail: [email_address]
    • Web: http://people.kmi.open.ac.uk/dietze