Your SlideShare is downloading. ×
0
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Distribucinfdefisher snedecor-130227210638-phpapp01
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Distribucinfdefisher snedecor-130227210638-phpapp01

2,698

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,698
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
53
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. DISTRIBUCIÓN F DE FISHERSNEDECOR. Presentado por: ANDREA NAVARRO JHON GARCIA LORENA CAICEDO WALTER MORA ALEJANDRO VASQUEZ ANDREAGOMEZ JUAN CAMILO BONILLA ANDRES VARGAS ESTEVAN MEJIA FABIAN GAVIRIA
  • 2. HISTORIA Matemático George Waddel Snedecor. (20 de octubre de 1881 – 15 de febrero de 1974) fue un matemático y estadístico estadounidense. Trabajó en el análisis de la varianza, análisis de datos, diseño de experimentos y metodología estadística. Da nombre a la Distribución F y a un premio de la Asociación de Estadística Americana.
  • 3. DEFINICIÓN
  • 4. REPRESENTACIÓN GRÁFICA  La función de densidad de una F se obtiene a partir de la función de densidad conjunta de U y V.  Para todo valor de x>0. Es evidente, por su construcción, que solo puede tomar valores positivos, como la chi cuadrado.  La forma de la representación gráfica depende de los valores m y n, de tal forma que si m y n tienden a infinitos, dicha distribución se asemeja a la distribución normal.
  • 5.  Definición Sea X una variable aleatoria. Diremos que X tiene una Distribución F de Fisher con n grados en el numerador y m grados en el denominador, si su función de densidad de probabilidad viene dada por :
  • 6.  lo que escribiremos como F à F(n, m)  La gráfica de la función de densidad con 25 grados de libertad en el numerador y 10 grados de libertad en el denominador, se da en la siguiente figura.
  • 7. ¿Cómo se deduce una distribución F?  Extraiga k pares de muestras independientes de tamaño n < 30. aleatorias  Calcule para cada par el cociente de variancias que proporciona un valor de F.  Graficar los valores de F de los k pares de muestras.
  • 8. Distribución F para diferentes grados de libertad:
  • 9. Ejemplos El jefe de un laboratorio se encuentra con una técnica de medición fuera del control estadístico. Para investigar las causas decide investigar si el factor humano tiene incidencia, y toma una muestra de suero cualquiera la divide en 20 alícuotas. Luego elige 10 de ellas al azar y se las entrega al laboratorista 1 para que haga las determinaciones; las restantes las encomienda al laboratorista 2 para que las mida. Los resultados obtenidos son: s12=2,4 es la varianza obtenida por el laborista, 1 y s22=0,8 para el otro. Decidir si hay diferencia en dispersión entre ambos
  • 10. Ejemplos H1: 2 1 H0: 2 2 2 1 2 2
  • 11. Ejemplos Como se trata de un ensayo de dos colas, para un nivel del 95% de confianza, se busca en las tablas para: υ1=υ2=n1-1=9 grados de libertad, mientras que α = 0,025 para el límite inferior y α = 0,975 para el superior. Estos valores son F0,975;(9,9) = 4,03. Luego, para calcular el valor no tabulado α = 0,025 se aprovecha una propiedad que tiene la función F usando la inversa: F0,025;(9,9) =1/F0,975; (9,9) =1/4,03 = 0,248 Como el valor hallado F=3 cae dentro de la zona de aceptación, no hay evidencia significativa como para decir que el factor humano tiene incidencia en la dispersión de las mediciones.

×