SlideShare is now on Android. 15 million presentations at your fingertips.  Get the app

×
  • Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
 

Acoustic And Petrophysical Properties Of A Clastic Deepwater Depositional System From Lithofacies To Architectural Elements Scales

by Senior Geoscience Consultant at FX Energy on Mar 26, 2009

  • 3,064 views

An analysis of acoustic, petrophysical, and stratigraphic heterogeneities has been completed at three scales for an outcropping/subcropping deep-water stratigraphic sequence: lithofacies, core/plug, ...

An analysis of acoustic, petrophysical, and stratigraphic heterogeneities has been completed at three scales for an outcropping/subcropping deep-water stratigraphic sequence: lithofacies, core/plug, lithostratigraphic unit, well log, and architectural element seismic. Measurement techniques/instruments included
outcrop measured sections; behind-outcrop drilling/logging/
coring and subsequent core and log analysis; ground-penetrating
radar; shallow seismic reflection profile; and electromagnetic induction.

At the lithofacies scale, four rock types are defined: 1)heterogeneous sandstones and; 2) uniform sandstones, which differ in their grain composition and sedimentary structures, but do not differ significantly in average porosity, permeability, and acoustic impedance; and 3) organic-rich shales and; 4) organic-poor shales, which exhibit significantly higher acoustic impedance than either sandstone type. There is an inverse relation between porosity and permeability versus acoustic impedance of the lithofacies at this scale. At the lithostratigraphic unit scale, three units of interbedded lithofacies are defined: 1) uniform sandstone prone; 2) heterogeneous sandstone prone, and; 3) shale prone. Successive merging of thinner beds with thicker beds results in clear differences in average rock properties between the lithostratigraphic units, but there is insufficient variation about the averages to preclude statistically significant differentiation of the sandstones. Lithostratigraphic unit properties also vary laterally. At the architectural element scale, two architectural
elements are channel element and lobe element. Only wellbore acoustic impedance differs significantly between these
two elements. However, the internal lateral architecture of these two elements is quite different. The results highlight the difficulty in evaluating stratigraphic patterns away from the wellbore. More research in this area is warranted. Attempts to quantify lateral variability of properties in a geologically realistic manner are encouraged because lateral variability is as important to reservoir characterization and performance as is vertical variability.

Statistics

Views

Total Views
3,064
Views on SlideShare
3,042
Embed Views
22

Actions

Likes
1
Downloads
203
Comments
0

3 Embeds 22

http://www.lmodules.com 8
http://www.linkedin.com 7
https://www.linkedin.com 7

Accessibility

Categories

Upload Details

Uploaded via SlideShare as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
Post Comment
Edit your comment

Acoustic And Petrophysical Properties Of A Clastic Deepwater Depositional System From Lithofacies To Architectural Elements Scales Acoustic And Petrophysical Properties Of A Clastic Deepwater Depositional System From Lithofacies To Architectural Elements Scales Document Transcript