Энергоэффективные ограждающие конструкции.
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,216
On Slideshare
788
From Embeds
428
Number of Embeds
5

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 428

http://toloka.info 309
http://www.toloka.info 77
http://altbee.ru 23
http://svai.in.ua 15
http://www.altbee.ru 4

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Energy Efficient Building Envelope Kiev, 13.5.2010 Dr.‐Ing. R. Himmler energydesign stuttgart – Ingenieurgesellschaft mbH Gropiusplatz 10  70563 Stuttgart Germany www.energydesign‐st.com robert.himmler@energydesign‐st.com Seite 1
  • 2. Energy Efficient Pilot Project Ukraine ‐ Structure Ministry for Construction Cooperation Ministry for Environment Contracted for Implementation Consultancy Energy Efficient Pilot Project Consultancy Design Working Group Building Design Team m-g-h Building Owneringenieure + architekten GmbH Architect Structural Engineer HVAC Engineer stuttgart Contractor Seite 2
  • 3. Objectives of the „Energy Efficient Pilot Project“ Development of energy‐efficient building concepts during the planning stage and  implementation Awarness‐raising within the relevant national  and municipal institutions, associations,  chambers and the general public Training and instruction of architects,  engineers, municipalities and construction companies Seite 3
  • 4. Building Envelopes – Nowadays Berlin Kiev Abu Dhabi Seite 4
  • 5. Hot and Humid Climate Seite 5
  • 6. Cold and Dry Climate Seite 6
  • 7. Traditional Buildings in Ukraine CO2 neutral energy supply thermal insulation passive shading system sufficient window/wall area Seite 7
  • 8. Energy Balance of a Building  Transmission QS QT Solar QV Qi Ventilation Internal Gains QT Heat Loss - Heat Gains = Qh QT + QV - η ( QS + Qi ) = Qh (Heating Demand) Seite 8
  • 9. Heating Demand – Energy Balance 120 110 Heat Losses ‐ Heat Gains =       Heating Demand (Qh) 100 passiv‐ 90 solar 20 % Ventilation QS 80 Nutzbare Heating Energy [kWh/m2] QV 50 % Gewinne 70 30 % internal 60 Qi 50 40 30 Trans‐ Heating 50 % mission  50 % 20 Demand QT Q h 10 0 Source: TU Braunschweig, IGS Seite 9
  • 10. Compact Building Design ‐ Surface‐to‐Volume Ratio  A      Area of Building Envelope V      Volume of Building                   Source: TU Braunschweig, IGS Seite 10
  • 11. Kiev, Sherbakova A/V = 0,24 Source: AAA Architects Seite 11
  • 12. Passive solar gains ‐ shading N Building Orientation So t es ut hw he as ut t So Shading Angle 15° avoid high plants (e.g. trees) Seite 12
  • 13. Passive solar gains ‐ shading • Stepping of Buildings • Roof Forms Seite 13
  • 14. Urban City Design – Considering Orientation of the Buildings Heating Demand Solar Gains Appartment Area Seite 14
  • 15. Solarisation of Urban Planning ‐ Passive House Neighbourhood Ulm SOUTH Seite 15
  • 16. Solarhaus des Sokrates (469 ‐ 397 v. Chr.) 1 Solar Radiation in Summertime 2 Solar Radiation in Wintertime 3 Terrasse 4 Living Room 5 Storage Room 6 Massiv Walls (Heat Storage) 7 Stone Floor (Heat Storage) Quelle: M. Trebersprung, Neues Bauen mit der Sonne Solar Heating Shading in Heating in Winter Summer 6 Seite 16
  • 17. Roller Shutter ‐ Examples Advantages: ‐ improves thermal comfort ‐ reduces cooling demand ‐ blinds ‐ burglar protection Seite 17
  • 18. Thermal Insulation: Roof, Walls, Floors Seite 18
  • 19. Wall types thermal insulation light‐frame monolithic composite system construction sandwich Seite 19
  • 20. Comparison of Insulation Standards EnEV‐Standard Passive House U‐Value U‐Value [W/m²K]  [W/m²K]  Wall 10 cm < 0,45  30 cm < 0,15 also monolithic Roof 16 cm < 0,35  40 cm < 0,1 Windows 2‐fach < 1,70  3‐fach < 0,8 Seite 20
  • 21. Only Good Quality during the Construction Process Guarantees Good Results! Thermal Insulation QT QTSource: Hasit -15°C 20°C -15°C 20°C 0°C AdhesiveSource: StoCretec Wall Seite 21
  • 22. Heat Bridges very bad, heat bridges can lead to better optimised solution condensation and mould Seite 22
  • 23. Example: connection wall ‐ floor conventional solution improved solution Seite 23
  • 24. Reduce Heat Bridges! Standard Frame covered  Frame shifted into  by insulation insulation layer Ψ = 0,12 W/(mK) Ψ = 0,03 W/(mK) Ψ = 0,55 W/(mK) Seite 24
  • 25. Heat bridges lead to condensation and mould Seite 25
  • 26. Air Tight Building Envelope Seite 26
  • 27. Which materials are air tight? air tight: • plaster • concrete • steam brake / plastic • wood • glazing / window frames not air tight: • thermal insulation • foam insulation • brick wall Seite 27
  • 28. Example for damaged steam brake Seite 28
  • 29. Quality Control during Design, Construction and Commissioning concept design comissioning construction Seite 29
  • 30. Blower‐Door‐Test n50 limit defined by German standard DIN 4108 pressure difference: 50 Pa leakage ventilator Seite 30
  • 31. Thermography for Quality Control of the Facade  Seite 31
  • 32. Summary• adapt the building envelope to the climate• plan compact buildings with low A/V ratio• increase passive solar heat gains through windows with south  orientation• don‘t forget sun shading and passive cooling strategies, avoid  HVAC• thoroughly plan a thermal insulation and air tightness strategy• pay attention to construction details (heat bridges, air leakage)• teach the craftsmen and carry our construction site inspections• check the building quality with blower door tests or thermography Seite 32
  • 33. Heat Pump Workshop: 23.6.2010 for you ion! Thank tent r at you Seite 33