• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Hadoop Mahout Budai Steliana
 

Hadoop Mahout Budai Steliana

on

  • 1,722 views

 

Statistics

Views

Total Views
1,722
Views on SlideShare
1,722
Embed Views
0

Actions

Likes
0
Downloads
26
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Hadoop Mahout Budai Steliana Hadoop Mahout Budai Steliana Document Transcript

    • Apache Hadoop în conjuncţie cu Mahout
      Budăi Steliana:steliana.budai@infoiasi.ro
      Odata cu cresterea masivă, atat a datelor structurate cat si a celor nestructurate, apare nevoia de a sti ce se află in aceste date. Invatarea automată este folosita pentru a afla ce este în aceste date cu un input uman minim. Construit peste Apache Handoop, Mahout rezolvă o serie de probleme de învăţare automată folosind terabytes de date pe mii de calculatoare
      Keywords: Mahout, Hadoop, clasificare, Bayes, SVM
      Ce este Handoop?
      Căutarea informaţiilor pe web folosind Google sau Yahoo se face foarte repede deoarece se foloseste algoritmul Map Reduce. Acesta este o tehnologie porprietară. Apache vine cu un framework map reduce propriu numit Hadoop
      Apache Hadoop este un framework java ce ofera posibilitatea aplicaţiilor să lucreze cu mii de noduri si cantitaţi mari de date. Handoop este un proiect Apache fiind folosit şi construit de o comunitate formată din persoane din intreaga lume. Yahoo are cea mai mare contributie la acest proiect, folosind Handoop la cautări si publicitate. Alti contribuitori sunt Google si IBM, care il folosesc pentru cursuri universitare si programare distribuită.
      Trăsaturi Handoop
      • este un framework pentru rularea aplicaţiilor pe clustere, oferind aplicaţiilor siguranţa şi posobilitatea de a migra datele
      • poate rula in trei moduri diferite, depinzand de modul de distributie al proceselor:
      • modul implicit: totul e rulat de un proces java
      • pseudo distribuit ruleaza pe o singura masina cu diferiti demoni Handoop rulati ca procese java diferite
      • distribuit complet sau modul cluster o masina din cluster este NameNod(are grija de namespace, ) ul si alta este JobTraker - ul
      • implementează paradigma map reduce, care se bazeaza pe faptul ca aplicaţia este divizată în mici fragmente fiecare din ele putand fi executată sau reexecutată pe fiecare nod din cluster. Map Reduce este o combinatie a funcţiilor map() şi reduce()
      • Map: ofera functionalitate pentru procesare datelor de tip cheie valoare pentru a genera perechi de tip cheie valoare pentru output
      • Reduce: include functionalitate pentru colecatrea output ului de la map - uri de procesare paralele si crearea otputului din datele colectate.
      • ofera un sistem de fisiere distribuit care stochează datele pe noduri. Atat map/reduce cat şi fişierele de sistem distribuite sunt create astfel încat eşecurile din noduri sunt tratate de framework
      Exemplu Map Reduce pentru transformarea textului cu spaţii în text fără spaţii
      public static class Map extends MapReduceBase
      implements Mapper {
      private Text initialText = new Text();
      private Text textTransformed = new Text();
      public void map(LongWritable key, Text inputs,
      OutputCollectoroutput, Reporter reporter) throws IOException {
      String input = inputs.toString();
      intş length = input.length();
      String transformed = new String();
      for(int i=length-1; i>=0; i--){
      if(input.get(i)!=” ”)
      transformed+= input.charAt(i));
      }
      initialText.set(inputString);
      textTransformed.set(transformed);
      output.collect(inputText,reverseText);
      }
      }
      public static class Reduce extends MapReduceBase
      implements Reducer {
      public void reduce(Text key, Iterator values,
      OutputCollector output,Reporter reporter) throws IOException {
      while (values.hasNext()) {
      output.collect(key, values.next());
      }
      }
      }
      Mahout
      Ce este Mahout?
      Subproiect Hadoop pentru dezvoltarea algoritmilor de învatare automată scalabili, comerciali. Numele a fost ales in respect fata de Handoop, al cărui logo este un elefant. Mahout inseamna om care conduce un elefant.
      La momentul actual Mahout oferă support pentru următoarele:
      recomandare : învată din comportamentul user-ului şi încearcă să găsească ce i-ar place user-ului;
      clustering: se grupează documente text si se pun în grupuri de documente înrudite;
      clasificare: se învată din documentele existente cum arată un document de un anumit tip, fiind capabil ulterior sa eticheteze un anumit document intr-o anumită categorie.
      Exemple practice
      separarea informatiei importante de spam;
      Fig 1: proiect Apahe ce încearcă să identifice spamul
      gruparea stirilor in funcţie de tema;
      gasirea programatorilor cu interese similare;
      descoperirea grupurilor cu rezultate de cautare inrudite;
      sortarea dupa relevanţă.
      Ce este Clasificarea?
      Clasificarea: se învată din categoriile de documente existente cum arată documentele de o anumita categorie; dat fiind un nou document acesta va fi asignat cu uşrinţă unei categorii.
      Exemplu de folosire al clasificarii
      avem: un motor de cautare se vrea: indexarea paginiolor pe o anumita temă
      recomandarea clipurilor video
      Fig 2: rezultat al căutării pe You Tube al cuvantului Scrubs
      RSS (imput:canale RSS, output: adu – mi pe cel mai nou si mai bun)
      Fig3: imaginea preluată de la adresa http://cwiki.apache.org/MAHOUT/bookstutorialstalks.data/froscon.pdf
      recomandare de ziare noi(input: ziare preferate si lista de noi aparitii, output: recomandare de ziare noi )
      Fig 4: imagine preluată de la adresa http://cwiki.apache.org/MAHOUT/bookstutorialstalks.data/froscon.pdf
      oferirea de suport pentru debug
      poate face cautarea de job – uri mai uşoara(gasirea de job – uri postate pe internet şi extragerea automată a locului, titlului, datei)
      Fig 5: imagine preluată de la adresa http://cwiki.apache.org/MAHOUT/bookstutorialstalks.data/froscon.pdf
      agregarea informatiei(input: date gasite pe site uri sociale si motoare de cautare obisnuite, output: informatii despre o persoana sau firma)
      convertirea de text scris de mană în text pe calculator
      Algoritmi pentru clasificare
      Regresie Logistică
      • se bazeaza pe predicţia probabilitatii de indeplinire a unui eveniment
      • se foloseste de variabile de predictie care pot fi numerice sau de alt tip
      • este echivalentul discriminator pentru Bayes naiv. Nu modelează probabilitatea datei de input cum face acesta, deci nu poate face presupuneri false despre ditribuţia datelor de input
      Naive Bayes
      • Naive Bayes este rapid si usor de implementat, faţa de alţi algoritmi care sunt mai putin eronaţi, dar mult mai lenţi.
      Este cel mai des intalnit la filtrele de spam. In ciuda simplităţii şi a presupunerilor naïve, s – a dovedit a fi foarte bun in practică. Pentru a fi clasificate obiectele sunt reprezentate prin caracteristici numerice:
      Exemplu :
      la email spam: fiecare caracteristica indică daca un anumit cuvant este prezent sau nu in mail.
      Algoritmul are doua parti invatare si aplicare.
      Inainte de a se putea rula trainer – ul trebuie efectuată o muncă de pregătire pentru a seta o serie de documente pentru training şi un set de documente pentru testare.
      WikipediaDatasetCreatorDriver, inclus in sursele Mahout împarte documentele în funcţie categorii de interes. Categoria de interes poate fi orice categorie Wikipedia validă.
      Fie domeniile de interes moda, stiinţa, sport. Orice categorie Wikipedia care are o categorie din acestea trei va fi pus într – un grup împreună cu alte documente din aceeaşi categorie. Fiecare document este normalizat si ii este eliminată punctuaţia si alte elemente de care nu este nevoie pentru a face clasificarea. Documentele de test şi training nu trebuie sa fie aceleaşi.
      Dupa ce datele de test şi de training sunt setate se poat rula TrainClassifier, care va încerca să clasifice documentele. Va rezulta o cantitate mare de loguri atat de la Mahout cat şi de la Hadoop. Output ul testului este un set de date numit matrice de confuzie. Aceasta descrie cate rezultate au fost correct clasificate şi cate incorrect pentru fiecare categorie.
      Se observa că aproximati 75% din date sunt corecte , ceea ce e mult mai bine decat ghicire random.
      In timpul invatarii, algoritmului ii este atasat un set de vectori, fiecare dintre ei fiind clasificat clasei careuia ii apartine obiectul. Din aceasta este dedusa combinatia de caracteristici ce apare in mod fecvent in spam – uri. Avand aceasta informati este uşor de dedus daca un mesaj este spam sau nu.
      Acest algoritm face numeroase presupuneri neadevarate despre date: un exemplu: se consider că toate caracteristicile obiectului sunt independente(contraexemplu: fie data fraza “Statuia Libertatii" aceasta nu influenteaza probabilitatea de vedea grupul de cuvinte”New York”)
      Naive Bayes Complementar
      încearcă să corecteze unele dintre problemele clasificatorului Bayes Naiv, dar în acelaşi timp încearcă să menţină simplicitatea şi viteza
      SVM
      • Fiecare obiect este considerta un punct intr - un spatiu n - dimensional, n fiind numarul de atribute
      • folosite pentru descirerea obiectelor;
      • fiecarui punct ii este asignat un label, exemplu true sau false.
      • în timpul invatarii se incearca sa se gaseasca un hiperplan ce separa elementele true de cele false.
      • cum uneori este imposibil să se facă acest lucru, se va găsi hiperplanul care cauzeaza cele mai putine erori
      Perceptron şi Winnow
      ambii algoritmi sunt clasificatori simpli comparabili . Fiind date informaţii de antrenament într un spatiu n-dimensional ce e adnotat cu etichete binare, ei garantează gasirea unui hiperplan separator dacă există
      In contrast cu Perceptron, Winnow lucrează doar pe vectori binari
      Desi algoritmii sunt simpli merg foarte bine pentru clasificare de text si sunt rapid de antrenat chiar pentru dat seturi uriase. Spre deosebire de Naive Bayes nu se bazeaza pe presupunerea ca toate atributele sunt independente
      Retele neuronale
      sunt folosite pentru clasificarea obiectelor multi dimensionale;acestea sunt capabile sa invete nu numai hiperplane separatoare liniare ci si legaturi de decizie arbitrare
      Random Forests
      este nevoie de cross validare sau un test separat pt a estima erorile, acestea fiind estimate intern in timpul rulării
      pasii algoritmului:
      adunarea paginilor web
      asignarea de etichete: “in tema” sau “in afara temei”
      generarea de vectori de proprietati a paginilor web(parsarea textului si imbunatatirea vectorilor cu ajutorul cuvintelor gasite)
      antrenarea unor algoritmi
      aplicarea algoritmilor antrenati unor date noi
      zXyFiecare pagina web este un punct intr – un spatiu multi dimensional
      Figura 1: spaţiul multidimensional al paginilor web
      Pros si Cons Mahout
      Pros
      Mahout scaleaza sesiunile de training cu implementarea handoop
      Mahout este Open Source
      Cons:
      nu scaleaza conform asteptarilor
      scalabilitatea este obtinuta folosind o panta
      panta standard pe recomandare nu este foarte exactă(exemple: Netflix test: succes -3%  (0.98RMSE)),
      comparat cu alti algoritmi ce nu sunt inclusi in Mahout Factorizarea Matricilor (Netflix test: suces: 8.4% (0.87 RMSE))
      implementare ineficienta
      consum de memorie si resurse enorm
      doar filtrare colaborativa
      doar algoritmi standard
      Referinte
      http://en.wikipedia.org/wiki/Hadoop
      http://jeffeastman.blogspot.com/2008/03/what-is-mahout.html
      http://isabel-drost.de/hadoop/slides/google.pdf
      http://ml-site.grantingersoll.com/index.php?title=Incubator_proposal
      http://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf
      http://denizoktar.wordpress.com/2009/08/03/mahout-review-by-iletken/
      http://cwiki.apache.org/MAHOUT/bookstutorialstalks.data/froscon.pdf
      http://www.eu.apachecon.com/page_attachments/0000/0179/PG_20090313.pdf
      http://lucene.apache.org/mahout 
      http://www.ibm.com/developerworks/java/library/j-mahout/index.html
      http://www.javaworld.com/javaworld/jw-09-2008/jw-09-hadoop.html?page=4