Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Concept Analysis Presentation by Abigail Leslie De... 439 views
- Formal Concept Analysis by Tzar Umang 1072 views
- Operations Research Situations and ... by SSA KPI 591 views
- Economic and Operations Research Si... by SSA KPI 529 views
- Cooperative Interval Games by SSA KPI 587 views
- Cooperation under Interval Uncertainty by SSA KPI 489 views

1,662 views

1,460 views

1,460 views

Published on

AACIMP 2011 Summer School. Operational Research Stream. Lecture by Erik Kropat.

No Downloads

Total views

1,662

On SlideShare

0

From Embeds

0

Number of Embeds

3

Shares

0

Downloads

71

Comments

0

Likes

3

No embeds

No notes for slide

- 1. Summer School“Achievements and Applications of Contemporary Informatics, Mathematics and Physics” (AACIMP 2011) August 8-20, 2011, Kiev, Ukraine ̶ Formal Concept Analysis ̶ Erik Kropat University of the Bundeswehr Munich Institute for Theoretical Computer Science, Mathematics and Operations Research Neubiberg, Germany
- 2. Formal Concept AnalysisFormal Concept Analysis studies, how objects can be hierarchically grouped togetheraccording to their common attributes. Tree of Life Source: Tree of Life Web Project http://tolweb.org/tree/
- 3. Formal Concept Analysiswww.arthursclipart.org
- 4. What is a “concept” ?A concept is a cognitive unit of meaning or a unit of knowledge. Concept Bird properties − feathered − warm-blooded − winged − egg-laying − bipedal − vertebrate objects blackbird, sparrow, raven,…
- 5. Formal Concept Analysis• . . . is a powerful tool for data analysis, information retrieval, and knowledge discovery in large databases.• . . . is a conceptual clustering method, which clusters simultaneously objects and their properties.• . . . can mathematically represent, identify and analyze green yellow conceptual structures. red 2-dim cylinder disk 3-dim triangle cube
- 6. yellow triangle cube greenExample disk cylinder red 3-dim 2-dim 3-dim 2-dim yellow green red
- 7. Formal Concept Analysis• . . . models concepts as units of thought, consisting of two parts: − extension = objects belonging to the concept − intension = attributes common to all those objects.• . . . is an exploratory data analysis technique for discovering new knowledge.• . . . can be used for efficiently computing association rules applied in decision support systems.• . . . can extract and visualize hierarchies !!!
- 8. Formal Concept AnalysisGoal: Derive automatically an ontology from a – very large – collection of objects and their properties or features. Target Marketing Set of objects ⇒ clusters of objects customers correspond ⇔ one-for-one Set of attributes age, sex, income level, ⇒ clusters of attributes spending habits, … predict customer purchase decisions / ⇒ recommend products to customers
- 9. Sensitive advertisement clusters of objects correspond one-for-one clusters of attributes
- 10. Formal Contexts
- 11. Example: Classification of plants and animals Animal Dog Cat Plant lives on land Reed Water lily Oak lives in water Carp Potato Objects Attributes
- 12. Formal Concept AnalysisExample: Classification of plants and animals AttributesQuestion: Lives in water Lives on landHas object g the attribute m ( Yes / No ) ? Animal Plant Dog x x Cat x x Oak x xBinary Relation Objects Potato x xA formal context can be represented Carp x x Water lily x xby a cross table (bit-matrix). Reed x x x
- 13. Formal ContextA formal context describes the relation betweenobjects and attributes. A formal context (G, M, I) consists of a set G of objects, a set M of attributes and a binary relation I ⊂ G x M. Has object g the attribute m ( yes / no ) ?
- 14. Notation• g I m means: “object g has attribute m”.Example: (a) dog I animal (b) carp I lives in water
- 15. Derivation Operators
- 16. The Derivation Operators (Type I)A ⊂ G selection of objects.Question: Which attributes from M are common to all these objects? Lives in waterSet of common attributes of the objects in A Lives on landA’ := A↑:= { m ∈ M | g I m for all g ∈ A } Animal Plant Dog x x Cat x x A⊂G A′ ⊂ M Oak x x Potato x x{Dog, Cat} Carp x x{Oak, Potato} Water lily x x Reed x x x
- 17. The Derivation Operators (Type I)A ⊂ G selection of objects.Question: Which attributes from M are common to all these objects? Lives in waterSet of common attributes of the objects in A Lives on landA’ := A↑:= { m ∈ M | g I m for all g ∈ A } Animal Plant Dog x x Cat x x A⊂G A′ ⊂ M Oak x x Potato x x{Dog, Cat} {Animal, lives on land} Carp x x{Oak, Potato} Water lily x x Reed x x x
- 18. The Derivation Operators (Type I)A ⊂ G selection of objects.Question: Which attributes from M are common to all these objects? Lives in waterSet of common attributes of the objects in A Lives on landA’ := A↑:= { m ∈ M | g I m for all g ∈ A } Animal Plant Dog x x Cat x x A⊂G A′ ⊂ M Oak x x Potato x x{Dog, Cat} {Animal, lives on land} Carp x x{Oak, Potato} Water lily x x Reed x x x
- 19. The Derivation Operators (Type I)A ⊂ G selection of objects.Question: Which attributes from M are common to all these objects? Lives in waterSet of common attributes of the objects in A Lives on landA’ := A↑:= { m ∈ M | g I m for all g ∈ A } Animal Plant Dog x x Cat x x A⊂G A′ ⊂ M Oak x x Potato x x{Dog, Cat} {Animal, lives on land} Carp x x{Oak, Potato} {Plant, lives on land} Water lily x x Reed x x x
- 20. The Derivation Operators (Type II)B ⊂ M a set of attributes.Question: Which objects have all the attributes from B? Lives in waterSet of objects that have all the attributes from B Lives on landB’ := B↓:= { g ∈ G | g I m for all m ∈ B } Animal Plant Dog x x Cat x x B⊂M B′ ⊂ G Oak x x Potato x x{Plant, lives on land} Carp x x{Animal, lives in water} Water lily x x Reed x x x
- 21. The Derivation Operators (Type II)B ⊂ M a set of attributes.Question: Which objects have all the attributes from B? Lives in waterSet of objects that have all the attributes from B Lives on landB’ := B↓:= { g ∈ G | g I m for all m ∈ B } Animal Plant Dog x x Cat x x B⊂M B′ ⊂ G Oak x x Potato x x{Plant, lives on land} {Oak, Potato, Reed} Carp x x{Animal, lives in water} Water lily x x Reed x x x
- 22. The Derivation Operators (Type II)B ⊂ M a set of attributes.Question: Which objects have all the attributes from B? Lives in waterSet of objects that have all the attributes from B Lives on landB’ := B↓:= { g ∈ G | g I m for all m ∈ B } Animal Plant Dog x x Cat x x B⊂M B′ ⊂ G Oak x x Potato x x{Plant, lives on land} {Oak, Potato, Reed} Carp x x{Animal, lives in water} Water lily x x Reed x x x
- 23. The Derivation Operators (Type II)B ⊂ M a set of attributes.Question: Which objects have all the attributes from B? Lives in waterSet of objects that have all the attributes from B Lives on landB’ := B↓:= { g ∈ G | g I m for all m ∈ B } Animal Plant Dog x x Cat x x B⊂M B′ ⊂ G Oak x x Potato x x{Plant, lives on land} {Oak, Potato, Reed} Carp x x{Animal, lives in water} {Carp} Water lily x x Reed x x x
- 24. 1) If a selection of objects is enlarged,Derivation Operators - Facts then the attributes which are commonLet (G, M, I) be a formal context. to all objects of the larger selection are amongA, A1, A2 ⊂ G sets of objects. the common attributes of the smaller selection.B, B1, B2 ⊂ G sets of attributes. 1) A1 ⊂ A2 ⇒ A′2 ⊂ A′1 1′) B1 ⊂ B2 ⇒ B′2 ⊂ B′1 2) A ⊂ A′′ 2′) B ⊂ B′′ 3) A′ = A′′′ 3′) B′ = B′′′ 4) A ⊂ B′ ⇔ B ⊂ A′ ⇔ A x B ⊂ I The derivation operators constitute a Galois connection between the power sets P(G) and P (M).
- 25. Formal Concepts
- 26. Formal ConceptsFormal Context: Defines a relation between objects and attributes.Real World: Objects are characterized by particular attributes. Object Attributes
- 27. Formal Concepts Let (G, M, I) be a formal context, where A ⊂ G and B ⊂ M. (A, B) is a formal concept of (G, M, I), iff A′ = B and B′ = A. The set A is called the extent and the set B is called the intent of the formal concept (A, B).
- 28. Formal Concepts• Extent A and intent B of a formal concept (A,B) correspond to each other by the binary relation I of the underlying formal context.• The description of a formal concept is redundant, because each of the two parts determines the other Extent Intent (objects) (attributes) Duality
- 29. How can we find “formal concepts”? Lives in water Lives on landA formal concept (A, B) corresponds to a Animal Plantfilled rectangular subtablewith row set A and column set B. Dog x x Cat x x Oak x x Potato x x( {Dog, Cat}, {Animal, lives on land} ) Carp x x Water lily x x Reed x x x
- 30. How can we find “formal concepts”? Lives in water Lives on landA formal concept (A, B) corresponds to a Animal Plantfilled rectangular subtablewith row set A and column set B. Dog x x Cat x x Oak x x Potato x x( {Dog, Cat}, {Animal, lives on land} ) Carp x x Water lily x x Reed x x x Each of the two parts determines the other!
- 31. ExerciseDetermine the sets of objects A and the set of attributes Bsuch that the pair (A, B) represents a formal concept.(a) A = {oak, potato, reed}, B = ?(b) A = ?, B = {animal, lives in water}
- 32. How can we find “formal concepts”? Lives in water Lives on landA formal concept (A, B) corresponds to a Animal Plantfilled rectangular subtablewith row set A and column set B. Dog x x Cat x x Oak x x Potato x x( {Dog, Cat}, {Animal, lives on land} ) Carp x x Water lily x x Reed x x( {Oak, Potato, Reed}, {Plant, lives on land} ) x
- 33. How can we find “formal concepts”? Lives in water Lives on landA formal concept (A, B) corresponds to a Animal Plantfilled rectangular subtablewith row set A and column set B. Dog x x Cat x x Oak x x Potato x x( {Dog, Cat}, {Animal, lives on land} ) Carp x x Water lily x x Reed x x( {Oak, Potato, Reed}, {Plant, lives on land} ) x( {Carp}, {Animal, lives in water} )
- 34. How can we find “formal concepts”? Lives in water Lives on land A formal concept (A, B) corresponds to a Animal Plant filled rectangular subtable with row set A and column set B. Dog x x Cat x x Oak x x Potato x xQuestion: Is the following pair a formal concept? Carp x x Water lily x x Reed x x x( {Oak, Potato}, {Plant, lives on land} )
- 35. How can we find “formal concepts”? Lives in water Lives on land A formal concept (A, B) corresponds to a Animal Plant filled rectangular subtable with row set A and column set B. Dog x x Cat x x Oak x x Potato x xQuestion: Is the following pair a formal concept? Carp x x Water lily x x Reed x x x( {Oak, Potato}, {Plant, lives on land} )There exist filled rectangular subtables that do not determine formal concepts
- 36. Computing all Formal ConceptsLemmaEach formal concept (A, B) of a formal context (G,M,I) has the form (A′′, A′) for some subset A⊂G and the form (B′, B′′) for some subset B ⊂ M.Conversely, all such pairs are formal concepts. Compute all formal concepts
- 37. Observations• (A′′, A′) ist a formal concept.• A ⊂ G extent ⇔ A = A′′. B ⊂ M intent ⇔ B = B′′.• The intersection of arbitrary many extents is an extent. The intersection of arbitrary many intents is an intent.
- 38. Algorithm for Computing all Formal ConceptsA) Determine all Concept Extents 1. Initialize a list of concept extents. Write for each attribute m ∈ M the extent {m}’ to the list. 2. For any two sets in the list, compute their intersection. If the result is set that is not yet in the list, then extend the list by this set. With the extended list, continue to build all pairwise intersections. Extend the list by the set G. ⇒ The list contains all concept extents.B) Determine all Concept Intents 3. Compute intents For every concept extent A in the list compute the corresponding intent A′ to obtain a list of all formal concepts (A, A′).
- 39. ExerciseCompute the formal concepts of the following formal context.
- 40. Exercise1. Initialize a list of concept extents. Write for each attribute m ∈ M the extent {m}’ to the list. Item Extent {m} Attribute m∈M e1 {Dog, Cat, Carp} {Animal} e2 {Oak, Potato, Water lily, Reed} {Plant} e3 {Dog, Cat, Oak, Potato, Reed} {Lives on land} e4 {Carp, Water lily, Reed} {Lives in water}
- 41. Exercise2. For any two sets in the list, compute their intersection. - If the result is a set that is not yet in the list, then extend the list by this set. - With the extended list, continue to build all pairwise intersections. - Extend the list by the set G. Item Extent Defined by e1 {Dog, Cat, Carp} {Animal} e2 {Oak, Potato, Water lily, Reed} {Plant} e3 {Dog, Cat, Oak, Potato, Reed} {Lives on land} e4 {Carp, Water lily, Reed} {Lives in water} e5 ∅ e1 ∩ e2 e6 {Dog, Cat} e1 ∩ e3 e7 {Carp} e1 ∩ e4 e8 {Oak, Potato, Reed} e2 ∩ e3 e9 {Water lily, Reed} e2 ∩ e4 e10 {Reed} e3 ∩ e4 e11 {Dog, Cat, Oak, Potato, Carp, Water lily, Reed} G
- 42. Exercise2. For any two sets in the list, compute their intersection. - If the result is a set that is not yet in the list, then extend the list by this set. - With the extended list, continue to build all pairwise intersections. - Extend the list by the set G. Item Extent Defined by e1 {Dog, Cat, Carp} {Animal} e2 {Oak, Potato, Water lily, Reed} {Plant} e3 {Dog, Cat, Oak, Potato, Reed} {Lives on land} e4 {Carp, Water lily, Reed} {Lives in water} e5 ∅ e1 ∩ e2 e6 {Dog, Cat} e1 ∩ e3 e7 {Carp} e1 ∩ e4 e8 {Oak, Potato, Reed} e2 ∩ e3 e9 {Water lily, Reed} e2 ∩ e4 e10 {Reed} e3 ∩ e4 e11 {Dog, Cat, Oak, Potato, Carp, Water lily, Reed} G
- 43. Exercise3. Determine intents For every concept extent A in the list compute the corresponding intent A′ to obtain a list of all formal concepts (A, A′). Item Extent A Intent A′ e1 {Dog, Cat, Carp} {Animal} e2 {Oak, Potato, Water lily, Reed} {Plant} e3 {Dog, Cat, Oak, Potato, Reed} {Lives on land} e4 {Carp, Water lily, Reed} {Lives in water} e5 ∅ M e6 {Dog, Cat} {Animal, lives on land} e7 {Carp} {Animal, lives in water} e8 {Oak, Potato, Reed} {Plant, lives on land} e9 {Water lily, Reed} {Plant, lives in water} e10 {Reed} {Plant, lives on land, lives in water} e11 {Dog, Cat, Oak, Potato, Carp, Water lily, Reed} ∅
- 44. Conceptual Hierarchies and Concept Lattices
- 45. Is there a relation between the formal concepts? Animal super-concept Dog, Cat, Carp ≤ Animal, lives on land Animal, lives in water sub-concept Dog, Cat CarpIdea: Order concepts in a sub-concept ̶ super-concept hierarchy
- 46. Is there a relation between the formal concepts? Animal super-concept Dog, Cat, Carp ≤ Animal, lives on land Animal, lives in water sub-concept Dog, Cat CarpThe extent of the sub-concept is a subset of the extent of the super-conceptThe intent of the super-concept is a subset of the intent of the sub-concept
- 47. Conceptual HierarchyLet (A1, B1) and (A2, B2) be formal concepts of (G,M,I). (A1, B1) sub-concept of (A2, B2) :⇔ A1 ⊂ A2 [⇔ B2 ⊂ B1 ]. Animal Dog, Cat, Carp• (A2, B2) is a super-concept of (A1, B1).• Notation: (A1, B1) ≤ (A2, B2) Animal, lives on land Dog, Cat
- 48. Conceptual Hierarchy• The set of all formal concepts of (G, M, I) is called the concept lattice of the formal context (G, M, I) and is denoted by B (G,M,I) .
- 49. Conceptual HierarchyTheoremThe concept lattice of a formal context is a partially ordered set. We need a notion of neighborhood⇒ We can draw figures that indicate intricate relationships!!
- 50. Conceptual HierarchyLet P be a set and ≤ is a binary relation on P.A partially ordered set is a pair (P, ≤), iff 1) x≤x (reflexive) 2) x ≤ y and x ≠ y ⇒ ¬ y ≤ x (antisymmetric) 3) x ≤ y and y ≤ z ⇒ x ≤ z (transitive)for all x, y, z ∈ P.
- 51. Conceptual HierarchyLet (A1, B1) and (A2, B2) be formal concepts of the context (G,M,I). (A1, B1) proper sub-concept of (A2, B2) [ (A1, B1) < (A2, B2)] :⇔ (A1, B1) ≤ (A2, B2) and (A1, B1) ≠ (A2, B2) . (A2 , B2) (A1 , B1)
- 52. Conceptual HierarchyExamples: In the following examples (A1, B1) is a proper sub-concept of (A2, B2) (a) (A2 , B2) (b) (A2 , B2) (A1 , B1) (A , B ) (A1 , B1)Question: What is the difference between (a) and (b)?Answer: In (a) the concept (A1, B1) is the lower neighbor of (A2, B2). In (b) the concept (A1, B1) is not the lower neighbor of (A2, B2).
- 53. Conceptual HierarchyProper sub-concepts can be used to define a notion of neighborhood.Let (A1, B1) and (A2, B2) be formal concepts of the context (G,M,I) (A2 , B2)and (A1, B1) is a proper sub-concept of (A2, B2).(A1, B1) is a lower neighbor of (A2, B2) [(A1, B1) (A2, B2)], (A , B )if no formal concept (A, B) exists with (A1 , B1) (A1, B1) < (A, B) < (A2, B2).
- 54. Drawing Concept Lattices• Draw formal concepts Draw a small circle for every formal concept. A circle for a concept is always positioned higher than the circles of its proper sub-concepts.• Draw lines Connect each formal concept (circle) with the circles of its lower neighbors.• Label with attribute names Attach the attribute m to the circle representing the concept ( {m}′, {m}′′ ).• Label with object names Attach each object g to the circle representing the ({g}′′ , {g}′).
- 55. ExerciseCompute the concept lattice of the following formal concept.
- 56. Drawing Concept Lattices G e11 plant e2 e4 aquatic e1 animal e3 terrestrial water water plant e9 e7 animal e6 land animal terrestrial e8 plants water lily carp dog, cat oak, potato plants, on land e10 & in water reed e5 ∅
- 57. ExerciseCompute the formal concepts of the following formal context: Attributes Habital zone Terrestrial Gas giant Moon Earth x x x Jupiter x x Objects Mercury x Mars x x
- 58. Exercise1. Initialize a list of concept extents. Write for each attribute m ∈ M the extent {m}’ to the list. Item Extent {m} Attribute m∈M e1 {jupiter} {gas giant} e2 {earth, mercury, mars} {terrestrial} e3 {earth, jupiter, mars} {moon} e4 {earth} {habital zone}
- 59. Exercise 2. For any two sets in the list, compute their intersection. If the result is a set that is not yet in the list, then extend the list by this set. With the extended list, continue to build all pairwise intersections. Extend the list by the set G. Item Extent Defined by e1 {jupiter} {gas giant} e2 {earth, mercury, mars} {terrestrial} e3 {earth, jupiter, mars} {moon} e4 {earth} {habital zone} e5 ∅ e1 ∩ e2 e6 {earth, mars} e2 ∩ e3 e7 {earth, jupiter, mercury, mars} G
- 60. Exercise3. Determine intents For every concept extent A in the list compute the corresponding intent A′ to obtain a list of all formal concepts (A, A′). Item Extent Intent e1 {jupiter} {gas giant, moon} e2 {earth, mercury, mars} {terrestrial} e3 {earth, jupiter, mars} {moon} e4 {earth} {terrestrial, moon, habital zone} e5 ∅ M e6 {earth, mars} {terrestrial, moon} e7 {earth, jupiter, mercury, mars} ∅
- 61. Exercise GConcept Lattice e7 terrestrial moon earth, mercury, e2 e3 earth, jupiter, mars mars terrestrial, e6 moon earth, mars gas giant, terrestrial, e4 e1 moon moon, habitual jupiter earth e5 ∅
- 62. Applications
- 63. Applications• Web information retrieval → How can web search results retrieved by search engines be conceptualized and represented in a human-oriented form.• Partner selection for interfirm collaborations → Identification of structural similarities between potential partners according to the characteristics of the prospective partner firms.• Information systems for IT security management → Identification of security-sensitive operations performed by a server.• Data warehousing and database analysis → Controlling the trade of stocks and shares.
- 64. Bioinformatics Verducci J S et al. Physiol. Genomics 2006;25:355-363©2006 by American Physiological Society
- 65. Bioinformatics Biclustering / co-clustering Simultaneous clustering of the rows and columns of a matrix. Verducci J S et al. Physiol. Genomics 2006;25:355-363©2006 by American Physiological Society
- 66. Summary• Formal concept analysis provides methods for an automatic derivation of ontologies from very large collections of objects and their attributes.• Reveal unknown, hidden and meaningful connections between groups of objects and groups of attributes.• The methods are supported by algebra, lattice theory and order theory.• Visualization techniques are available.• Strong connections to co-clustering (bi-clustering) methods (important tools in DNA-microarray analysis).
- 67. Literature• Bernhard Ganter, Gerd Stumme, Rudolf Wille (ed.) Formal Concept Analysis. Foundations and Applications. Springer, 2005.• Claudio Carpineto, Giovanni Romano Concept Data Analysis: Theory and Applications. Wiley, 2004.Software www.fcahome.org.uk/fcasoftware.html
- 68. Thank you very much!

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment