Smahtrfor4thapnef17jun10
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Smahtrfor4thapnef17jun10

on

  • 431 views

Presentation for the 4th Asia-Pacific Nuclear Energy Forum, held in Berkeley California in June 2010

Presentation for the 4th Asia-Pacific Nuclear Energy Forum, held in Berkeley California in June 2010

Statistics

Views

Total Views
431
Views on SlideShare
431
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Smahtrfor4thapnef17jun10 Presentation Transcript

  • 1. Sm-AHTR – the SmallModular Advanced HighTemperature ReactorPresented to4th Annual Asia-Pacific Nuclear Energy ForumBerkeley, CAJune 18, 2010BySherrell GreeneDirector, Nuclear Technology ProgramsOak Ridge National Laboratorygreenesr@ornl.gov, 865.574.0626
  • 2. Presentation overview •  SmAHTR design objectives •  Preliminary SmAHTR concept •  SmAHTR concept optimization and design trades •  Principal SmAHTR development challenges2 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 3. The SmAHTR concept is the product of ORNL’s ongoing investigation of the FHR design space • Reactor power level • Physical size • System complexity • Operating temperatures • Fuel forms • Material classes • Economics3 Managed by UT-Battelle • Safety for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 4. SmAHTR design objectives target both electricity and process heat production •  Initial concept operating temperature of 700 ºC with future evolution path to 850 ºC and 1000 ºC •  Thermal size matched to early process heat markets •  Integral system architectures compatible with remote operations •  Passive decay heat removal •  Dry heat rejection •  Truck transportable4 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 5. SmAHTR is a small, integral system, thermal spectrum FHR Overall System Parameters Parameter   Value   Power  (MWt  /  MWe)   125  /  50+   Primary  Coolant   LiF-­‐BeF2   Primary  Pressure  (atm)   ~1   Core  Inlet  Temperature  (ºC)   650   Core  Outlet  Temperature  (ºC)   700   Core  coolant  flow  rate  (kg/s)   1020   OperaJonal  Heat  Removal   3  –  50%  loops   Passive  Decay  Heat  Removal   3  –  50%  loops   Power  Conversion   Brayton   Reactor  Vessel  PenetraJons   None  5 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 6. SmAHTR is small… SmAHTR AHTR6 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 7. SmAHTR employs prismatic core block concept with removable TRISO compacted stringer fuel elements Prismatic   SmAHTR Core Parameters Stringer  fuel   fuel  block   Parameter   Value   Fuel  Design   TRISO  UCO  fuel   in  stringer  fuel   assemblies   Number  fuel  assembly  columns   19   Number  fuel  pins/column   72     Number  graphite  pins  /  column   19   IniJal  Fissile  Mass  (kg)   195   Total  Heavy  Metal  (kg)   987   Enrichment   19.75%   Avg.  Power  Density  (MW/m3)   9.4     Coolant  hole  in   Radial  re6lector   Refueling  Interval  (yr)   2.5     radial  re6lector   graphite  7 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 8. SmAHTR employs “two-out-of-three” heat transport design philosophy Intermediate Heat Transport Loop Parameters Parameter   Value   Number  of  Intermediate  Heat  Exchangers  (IHX)   3   Number  IHX  needed  for  full  power  opera@ons   2   IHX  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell   Primary  Coolant   LiF-­‐BeF2   Primary  Inlet  Temperature  (ºC)   700   Primary  Outlet  Temperature  (ºC)   650   Primary  flow  rate  (kg/s)   350  (each)   Secondary  Coolant   LiF-­‐NaF-­‐KF   Secondary  Inlet  Temperature  (ºC)   582   Primary  Outlet  Temperature  (ºC)   610   Secondary  flow  rate  (kg/s)   800  (each)  8 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 9. SmAHTR employs “two-out-of-three” passive decay heat removal In-vessel Passive Decay Heat Removal System Parameters In-­‐vessel  DRACS  HX  Parameter   Value   Number  DRACS  in-­‐vessel  heat  exchangers   3   Number  DRACS  loops  needed  for  full   2   power  opera@on   DRACS  Salt-­‐to-­‐Salt  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell   Primary  Coolant   LiF-­‐BeF2   Secondary  Coolant   LiF-­‐NaF-­‐KF  9 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 10. SmAHTR employs “two out of three” passive decay heat removal Ex-vessel Passive Decay Heat Removal System Parameters Ex-­‐vessel  DRACS  HX  Parameter   Value   Salt-to- FLiNaK Air Number  DRACS   3   Radiator Number  DRACS  needed  for  full  power   2   opera@ons   DRACS  Salt-­‐to-­‐Air  Design  Concept   Ver@cal  finned  tube  radiator   Primary  Coolant   LiF-­‐NaF-­‐KF   Air Air  Flow  Area  (m2)   4   In- vessel In-­‐vessel  HX  –  to  –  air  HX  riser  height  (m)   8   DRACS HX Total  chimney  height  (m)   12   FLiBe ~10 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 11. SmAHTR is good match with indirect Brayton power conversion approaches •  Options –  Standard closed –  Supercritical closed –  Open air (similar to ANP & HTRE) •  Issues to consider –  Physical size & weight –  Multi-unit clustering –  Heat exchanger pressure differentials –  Efficiency and scalibility to higher temperatures –  Tritium leakage –  Compatibility with dry heat rejection •  Analysis beginning11 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 12. Peak center-line fuel temperatures duringnormal operations are acceptable 1178°C 650°C 700°C12 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 13. Peak fuel temperatures for AlphaTransient (20 s pump coast-down with10 s scram delay) only increase ~50 ºC13 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 14. Two DRACS loops provided adequate decay heat removal 727°C 712°C14 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 15. SmAHTR design attributes should promote favorable economics* Phenomenological   FHR  A]ribute   Impact(s)   Cost  Implica@ons   High  primary  coolant   •  Low  fluid  pumping  requirements   •  Compact  coolant  and   volumetric  heat  capacity   •  Near-­‐constant-­‐temperature  energy   heat  transport  loops   transport   (small  pipes,  pumps,   heat  exchangers)   Low  primary  system   •  Low  pipe  break  /  LOCA  energeJcs   •  Thin-­‐walled  reactor   pressure   •  Low  source  term  driving  pressure   vessel  and  piping   •  Smaller,  less  complex   containments   Transparent  coolant  with   •  Visible  refueling  operaJons   •  Efficient  refueling   low  chemical  acJvity   •  Low  pipe  break  /  LOCA  energeJcs   •  Smaller  containments   High  primary  system   •  High  power  conversion  efficiencies   •  Lower  fuel  costs   temperatures   •  High  temperature  fluid  –    materials   •  Higher  materials  cost   corrosion  and  strength  performance     •  Hot  refueling   TRISO  fuels   •  Large  fuel  temperature  margins   •  Robust  operaJng   •  Good  fission  product  afenJon   margins  and  safety  case   * Ingersoll et al., “Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)”, ORNL/TM-2004/104, May 200415 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 16. SmAHTR primary and secondary salt options match many desirable process heat applications LiF-BeF2 (67-33) R ange rature LiF-NaF-KF (46.5-11.5-42) Tempe Liquid ide Salt NaF-BeF2 (57-43) Fluor Melts Boils Electrolysis, H2 Prod., Coal Gasification Steam Reforming of Nat. Gas & Biomass Gasification Cogeneration of Electricity and Steam Oil Shale/Sand Processing Petro Refining 0 100 200 300 400 500 600 700 800 900 1000 110 1200 1300 1400 1500 1600 1700 Temperature (C)16 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 17. A SmAHTR materials technology evolution strategy is in development System  Element    @  700  ºC    @  850  ºC    @  1000  ºC   Graphite  Internals   Toyo  Tanso  IG110  or  430 Toyo  Tanso  IG110  or  430 Toyo  Tanso  IG110  or  430 Reactor  Vessel   Hastelloy-­‐N   • Ni-­‐weld  overlay  on  800H   •  Interior-­‐insulated  low-­‐ • Insulated  low-­‐alloy  steel   alloy  steel   • New  Ni-­‐based  alloy   Core  barrel  &  other   Hastelloy-­‐N   • C-­‐C  composite   • C-­‐C  composite   • New  Ni-­‐based  alloy   • SiC-­‐SiC  composite   internals   • New  refractory  metal   Control  rods  and   • C-­‐C  composites   • C-­‐C  composites   • C-­‐C  composites   • Hastelloy-­‐N   • Nb-­‐1Zr   • Nb-­‐1Zr   internal  drives   • Nb-­‐1Zr   IHX  &  DRACS     Hastelloy-­‐N   • New  Ni-­‐based  alloy   • C-­‐C  composite   • Double-­‐sided  Ni  cladding   • SiC-­‐SiC  composite   on  617  or  230   • Monolithic  SiC   Secondary  (salt-­‐to-­‐ Coaxial  extruded  800H   • New  Ni-­‐based  alloy   ?   tubes  with  Ni-­‐based  layer   • Coaxial  extruded  800H   gas)  HX   tubes  with  Ni-­‐based  layer  17 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10
  • 18. Summary •  SmAHTR concept explores the small FHR design space •  NOTHING OPTIMIZED –  Many design trades still to be evaluated •  Design objectives selected to –  address near-term process heat and electricity applications –  enable long-term evolution to higher efficiency electric generation and higher temperature process heat applications •  SmAHTR relies on new configurations and architectures of many demonstrated technologies •  SmAHTR attributes should promote cost-competitive system •  Imagine …18 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 18 Jun 10