Sports Physiology

14,855 views

Published on

Dra. Gomez

Published in: Health & Medicine
5 Comments
15 Likes
Statistics
Notes
  • wow!!!!!! Maha bakwas
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Dr Gomez,
    very interesting. I saw the slides, no audio. How can I listed to the full presentation. Is there a follow up anywhere, trying to understand what happens when I hit the gym.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • ok
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • thanks for uploading this :)
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Encontré muy buena la presentación, Felicidades y gracias por compartirla...
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
14,855
On SlideShare
0
From Embeds
0
Number of Embeds
101
Actions
Shares
0
Downloads
820
Comments
5
Likes
15
Embeds 0
No embeds

No notes for slide

Sports Physiology

  1. 1. EXERCISE AND SPORTS PHYSIOLOGY CARINA C. GOMEZ, M.D.
  2. 2. EXERCISE PHYSIOLOGY <ul><li>is the study of the physical and chemical events that provide for the conversion of chemical energy to mechanical work. </li></ul>
  3. 3. Muscular Contraction <ul><li>major physiologic event that occurs during exercise which requires energy (ATP). </li></ul>
  4. 4. Two Types of Muscular Contraction <ul><li>Isometric Contraction </li></ul><ul><ul><li>is a static contraction in which the muscle does not shorten. </li></ul></ul><ul><li>Isotonic contraction </li></ul><ul><ul><li>is a contraction in which the force of contraction remains constant throughout the shortening. </li></ul></ul><ul><li>a) Concentric contraction </li></ul><ul><ul><ul><ul><ul><li>occurs when shortening a muscle while </li></ul></ul></ul></ul></ul><ul><li> exerting a force. </li></ul><ul><li>b) Eccentric contraction </li></ul><ul><ul><ul><ul><ul><li>occurs when lengthening a muscle while </li></ul></ul></ul></ul></ul><ul><li> resisting an external load. </li></ul>
  5. 5. Muscles in Exercise <ul><li>STRENGTH </li></ul><ul><ul><li>determined mainly by size. </li></ul></ul><ul><ul><li>maximal contractile force (3 to 4 kg/cm 2 of muscle cross-sectional area). </li></ul></ul><ul><ul><ul><li>200 cm 2 - 600 – 800 kilograms (contractile strength) </li></ul></ul></ul><ul><ul><ul><li>200 cm 2 - 840 – 1120 kilograms (holding strength) </li></ul></ul></ul>
  6. 6. <ul><li>POWER </li></ul><ul><ul><li>is a measure of the total amount of work that the muscle performs in a unit period of time. </li></ul></ul><ul><ul><li>determined by </li></ul></ul><ul><li>a) strength of contraction </li></ul><ul><li>b) distance of contraction </li></ul><ul><li>c) number of times it contracts each minute </li></ul><ul><li>First 8 to 10 seconds 7000 kg.m/min </li></ul><ul><li>Next 1 minute 4000 kg.m/min </li></ul><ul><li>Next 30 minutes 700 kg.m/min </li></ul>
  7. 7. <ul><li>ENDURANCE </li></ul><ul><ul><li>final measure of muscle performance. </li></ul></ul><ul><ul><li>depends on the nutritive support for the muscle (glycogen). </li></ul></ul><ul><ul><li> High-carbohydrate diet 240 minutes </li></ul></ul><ul><ul><li> Mixed diet 120 minutes </li></ul></ul><ul><ul><li> High-fat diet 85 minutes </li></ul></ul><ul><ul><li>Amount of glycogen stored in a muscle </li></ul></ul><ul><ul><li> High-carbohydrate diet 40 g/kg muscle </li></ul></ul><ul><ul><li>Mixed diet 20 g/kg muscle </li></ul></ul><ul><ul><li>High-fat diet 6 g/kg muscle </li></ul></ul>
  8. 8. Male versus Female athlete <ul><li>almost identical basic physiologic principles are applied for both. </li></ul><ul><li>there are quantitative differences caused by: </li></ul><ul><li>a) body size </li></ul><ul><li>b) body composition (muscle mass) </li></ul><ul><li>- pulmonary ventilation </li></ul><ul><li>- cardiac output </li></ul><ul><li>- muscle strength </li></ul><ul><li>c) amount of testosterone </li></ul><ul><li>d) amount of estrogen </li></ul><ul><li>muscle strength per cm 2 = 3 to 4 kg/cm 2 (same) </li></ul>
  9. 9. TESTOSTERONE ESTROGEN ANABOLIC EFFECT ANABOLIC EFFECT  PROTEIN DEPOSITION  FAT DEPOSITION  MUSCLE MASS  BODY FAT CONTENT  MUSCLE STRENGTH AGGRESIVENESS  MUSCLE STRENGTH MILD TEMPERAMENT
  10. 13. <ul><li>Demands Cellular and organ-system </li></ul><ul><li>adjustments </li></ul><ul><li>Metabolic Metabolic </li></ul><ul><li>Thermal Respiratory </li></ul><ul><li>Fluid Cardiovascular </li></ul><ul><li> Endocrine </li></ul>
  11. 14. Metabolic Changes <ul><li>Phosphagen System </li></ul><ul><li>Glycogen-Lactic Acid System </li></ul><ul><li>Oxidative System </li></ul>
  12. 15. Phosphagen System (8-10 sec) <ul><li>Stored ATP (3 sec) </li></ul><ul><li>ATP = adenosine ~ PO 4 - ~ PO 4 - ~ PO 4 - </li></ul><ul><li>ATP -> ADP + Pi ADP -> AMP + Pi </li></ul>7300 calories 7300 calories
  13. 16. <ul><li>Phosphocreatinine or Creatinephosphate (5-7 sec) </li></ul><ul><li>Creatine ~ PO 4 - </li></ul><ul><li>PCr + ADP -> ATP + Cr </li></ul>10,300 calories
  14. 17. Glycogen-Lactic Acid System (1.3 to 1.6 minutes) GLYCOGEN GLUCOSE ATP + PYRUVIC ACID ATP + LACTIC ACID KREB CYCLE ATP O 2 FATIGUE
  15. 18. Aerobic System ( Unlimited--nutrient) CARBOHYDRATES (glucose) PROTEINS (amino acid) FATS (fatty acid) OXYGEN ATP + CO 2 + H 2 O
  16. 19. Maximal rates of power generation (moles of ATP/min) <ul><li>Phosphagen system 4 moles of ATP/min </li></ul><ul><li>Glycogen-Lactic acid system 2.5 moles of ATP/min </li></ul><ul><li>Aerobic system 1 mole of ATP/min </li></ul>
  17. 20. Comparison for endurance <ul><li>Phosphagen system 8 – 10 seconds </li></ul><ul><li>Glycogen-Lactic Acid System 1.3 – 1.6 minutes </li></ul><ul><li>Aerobic System Unlimited </li></ul><ul><li> (as long as nutrient lasts) </li></ul>
  18. 21. Energy Systems Used in Various Sports <ul><li>Phosphagen System (almost entirely) </li></ul><ul><ul><li>100-meter dash </li></ul></ul><ul><ul><li>Jumping </li></ul></ul><ul><ul><li>Weight lifting </li></ul></ul><ul><ul><li>Diving </li></ul></ul><ul><ul><li>Football dashes </li></ul></ul>
  19. 22. <ul><li>Phosphagen and Glycogen-Lactic Acid System </li></ul><ul><ul><li>200-meter dash </li></ul></ul><ul><ul><li>Basket ball </li></ul></ul><ul><ul><li>Baseball home run </li></ul></ul><ul><ul><li>Ice hockey dashes </li></ul></ul>
  20. 23. <ul><li>Glycogen-Lactic Acid System (mainly) </li></ul><ul><ul><li>400-meter dash </li></ul></ul><ul><ul><li>100-meter swim </li></ul></ul><ul><ul><li>Tennis </li></ul></ul><ul><ul><li>Soccer </li></ul></ul>
  21. 24. <ul><li>Glycogen-Lactic Acid System and Aerobic System </li></ul><ul><ul><li>800-meter dash 2000-meter rowing </li></ul></ul><ul><ul><li>200-meter swim 1500-meterrun </li></ul></ul><ul><ul><li>1500-meter skating 1-mile run </li></ul></ul><ul><ul><li>Boxing 400-meter swim </li></ul></ul>
  22. 25. <ul><li>Aerobic System </li></ul><ul><ul><li>10,000-meter skating </li></ul></ul><ul><ul><li>Cross-country skiing </li></ul></ul><ul><ul><li>Marathon run (26.2 miles, 42.2 km) </li></ul></ul><ul><ul><li>Jogging </li></ul></ul>
  23. 26. Recovery of Muscle Metabolic System After Exercise <ul><li>Phosphocreatinine </li></ul><ul><ul><li>Stored ATP </li></ul></ul><ul><li>Glycogen-Lactic Acid System </li></ul><ul><ul><li>Phosphocreatine </li></ul></ul><ul><ul><li>Stored ATP </li></ul></ul><ul><li>Aerobic System </li></ul><ul><ul><li>Glycogen-lactic acid system </li></ul></ul><ul><ul><li>Phosphocreatine </li></ul></ul><ul><ul><li>Stored ATP </li></ul></ul>
  24. 27. <ul><li>Removal of lactic acid </li></ul><ul><ul><li>converted to pyruvic acid </li></ul></ul><ul><ul><li>reconverted to glucose in the liver </li></ul></ul>
  25. 28. Percent carbohydrate usage 0 25 50 75 100 100 75 50 25 0 0 10 20 40 2 4 1 2 3 4 High carbohydrate diet Mixed diet High-fat diet seconds minutes hours Duration of exercise Percent fat usage
  26. 29. STORED OXYGEN (2 L) <ul><li>0.5 L - air in the lungs </li></ul><ul><li>0.25 L - dissolved in the body fluids </li></ul><ul><li>1 L - combined with hemoglobin </li></ul><ul><li>0.3 L - combined with myoglobin </li></ul><ul><li>Oxygen Debt (11.5 L) </li></ul><ul><li>a) 2 liters (stored O 2 ) </li></ul><ul><li>b) 9 liters (metabolic recovery) </li></ul>
  27. 30. Two Types of Muscle Fiber <ul><li>Slow Twitch Muscle Fiber </li></ul><ul><li>Fast Twitch Muscle Fiber </li></ul>
  28. 31. Slow Twitch Fast Twitch Synonyms Type I / Oxidative Type II / Glycolytic Red Muscle White Muscle Velocity of Shortening Slow / low Fast / high Diameter Small Large Source of energy Oxidative system Phosphagen/Glycolytic System Myoglobin Abundant Few Mitochondria Abundant Few Capillary density greater Few Resistance to fatigue Resistant Prone Function Provide endurance delivers power surge for few seconds to a minute
  29. 32. <ul><li>Hereditary differences among athletes for fast-twitch versus slow-twitch muscle fibers </li></ul><ul><li> Slow Twitch Fast Twitch </li></ul><ul><li>Marathoners 82 18 </li></ul><ul><li>Swimmers 74 26 </li></ul><ul><li>Average male 45 55 </li></ul><ul><li>Weight Lifters 45 55 </li></ul><ul><li>Sprinters 37 63 </li></ul><ul><li>Jumpers 37 63 </li></ul>
  30. 33. 0 2 4 6 8 10 30 25 20 15 10 5 0 Resistive training No load training Weeks of training Percent increase in strength
  31. 34. Respiratory Changes <ul><li>Increased O 2 consumption </li></ul><ul><ul><li>Normal O 2 consumption (at rest) = 250 ml/min </li></ul></ul><ul><ul><li>During exercise </li></ul></ul><ul><ul><li>Untrained average male 3600 ml/min </li></ul></ul><ul><ul><li>Trained average male (athlete) 4000 ml/min </li></ul></ul><ul><ul><li>Male marathon runner 5100 ml/min </li></ul></ul>
  32. 35. 0 1 2 3 4 5 120 100 80 60 40 20 0 O 2 Consumption (L/min) Total Ventilation (L/min) Moderate exercise Severe exercise
  33. 36. <ul><li>Increased Pulmonary Ventilation </li></ul><ul><ul><li>At maximal exercise 100 – 110 L/min </li></ul></ul><ul><ul><li>Maximal breathing capacity 150 – 170 L/min </li></ul></ul>Provides an element of safety for athletes Exercise at high altitude Exercise under very hot environment Abnormalities in the respiratory system
  34. 37. <ul><li>Increased in VO 2 Max </li></ul><ul><ul><li>rate of O 2 usage under maximal aerobic metabolism. </li></ul></ul><ul><li>Increased Oxygen Diffusing Capacity </li></ul><ul><ul><li>rate at whichO 2 can diffuse from the pulmonary alveoli to the blood (ml/min/mmHg). </li></ul></ul>
  35. 38. Cardiovascular Changes <ul><li>Increased muscular blood flow </li></ul><ul><ul><li>resting blood flow 3.6 ml/100g/min (2-4) </li></ul></ul><ul><ul><li>during maximal exercise 90.0 ml/100g/min </li></ul></ul><ul><ul><li>initially – neurally mediated response </li></ul></ul>
  36. 39. Causes of increased blood flow <ul><li>Vasodilation (decreases vascular resistance) </li></ul><ul><ul><li>impulses in the sympathetic vasodilator system. </li></ul></ul><ul><ul><li>decrease in tonic vasoconstrictive discharge </li></ul></ul><ul><ul><li>local mechanism </li></ul></ul><ul><ul><ul><li>decrease PO 2 (hypoxia) </li></ul></ul></ul><ul><ul><ul><li>increase PCO 2 (hypercapnea) </li></ul></ul></ul><ul><ul><ul><li>accumulation of K + </li></ul></ul></ul>
  37. 40. > 10% of maximal tension - compresses blood vessels - decreases blood flow > 70% of maximal tension - blood flow completely stopped Blood flow occurs in between contractions
  38. 41. CO X TPR SV X HR F = P /  R EDV - ESV
  39. 42. <ul><li>Increased in stroke volume </li></ul><ul><ul><li>decreased in ESV </li></ul></ul><ul><ul><ul><li>increased sympathetic discharge </li></ul></ul></ul><ul><ul><ul><li>increased cardiac contractility </li></ul></ul></ul><ul><ul><ul><li>cardiac muscular hypertrophy </li></ul></ul></ul>
  40. 43. <ul><li>Increased heart rate </li></ul><ul><ul><li>Increased sympathetic discharge </li></ul></ul><ul><ul><li>Increased catecholamines </li></ul></ul><ul><ul><li>Increased body heat </li></ul></ul>
  41. 45. <ul><li>Decreased total peripheral resistance </li></ul><ul><ul><li>Vasodilatation (muscles) </li></ul></ul>
  42. 46. <ul><li>Increased in heart rate </li></ul><ul><li>Increased in stroke volume </li></ul><ul><li>Increased in cardiac output </li></ul><ul><li>Decreased total peripheral resistance </li></ul><ul><li>Increased arterial blood pressure </li></ul><ul><li>Increased in blood flow </li></ul>
  43. 47.  CO X  TPR  SV X  HR  F =  P /  R EDV -  ESV
  44. 48. Endocrine Changes <ul><li>Increased secretion of; </li></ul><ul><ul><li>Aldosterone </li></ul></ul><ul><ul><li>Cortisol </li></ul></ul><ul><ul><li>Catecholamines </li></ul></ul>
  45. 49. Thermal Changes <ul><li>Increased body heat </li></ul>
  46. 50. BLOOD FLOW TO THE SKIN FROM THE DEEP TISSUES PROVIDES HEAT TRANSFER Rate of blood flow (0 – 30% of CO
  47. 52. THANK YOU FOR LISTENING

×