Real-life Rating Algorithm

3,913 views
3,829 views

Published on

Presentation of the Rating Algorithm based on Social Network of Domain Experts

Published in: Technology, Health & Medicine
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,913
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
54
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Real-life Rating Algorithm

  1. 1. Ranking System based on Social Network of Domain Experts Mateusz Marmołowski May 28, 2008
  2. 2. Motivation <ul><li>Rating / Ranking / Voting </li></ul><ul><li>Insufficient rating algorithms </li></ul><ul><li>Real-life situations, human behaviours </li></ul><ul><ul><li>Frienship factor </li></ul></ul><ul><ul><li>Domain experts </li></ul></ul><ul><li>Masters Thesis ;-) </li></ul>
  3. 3. Our goals <ul><li>New, real-life rating algorithm </li></ul><ul><li>Fully automated and efficient approach </li></ul><ul><li>Friendship consideration – social network </li></ul><ul><li>Expertise collection </li></ul><ul><li>REST SOA for simple access </li></ul>
  4. 4. Rating Algorithm - agenda <ul><li>Rating Calculation </li></ul><ul><ul><li>Friendship influence </li></ul></ul><ul><ul><li>Domain knowledge </li></ul></ul><ul><ul><li>Multiple domains </li></ul></ul><ul><ul><li>User Weight </li></ul></ul><ul><ul><li>Weighted Rate </li></ul></ul><ul><ul><li>Bayesian Weighted Rate </li></ul></ul><ul><li>Expertise Calculation </li></ul><ul><ul><li>Weighted Expertise Value </li></ul></ul><ul><ul><li>Activity factor </li></ul></ul><ul><ul><li>Final expertise calculation </li></ul></ul><ul><ul><li>Expertise propagation process </li></ul></ul>
  5. 5. Rating Algorithm
  6. 6. Rating Calculation
  7. 7. RC – Friendship influence Range: [50 – 100%]
  8. 8. RC – Domain knowledge <ul><li>Domain expertise </li></ul><ul><li>P arameter α – for amateurs </li></ul><ul><li>Inaccurate domain adjustment </li></ul><ul><ul><li>Generalization and particularization </li></ul></ul><ul><ul><li>Expertise propagation </li></ul></ul>
  9. 9. RC – Multiple domains <ul><li>Resource with multiple domains assigned </li></ul><ul><li>Solution - geometric series </li></ul><ul><li>MD factor: </li></ul>39% 5 47% 4 58% 3 75% 2 100% 1 MD(d) d
  10. 10. RC – User Weight <ul><li>Each rate is being weighted with UW </li></ul><ul><ul><li>Frienship with the author </li></ul></ul><ul><ul><li>Expertise in resource’s domains </li></ul></ul><ul><li>User Weight for a specific resource: </li></ul>
  11. 11. RC – Weighted Rate <ul><li>Weighted Rate for resource </li></ul><ul><li>Rate given by user </li></ul><ul><li>User Weight </li></ul><ul><li>The author of </li></ul><ul><li>The number of rates for a resource </li></ul>
  12. 12. RC – Bayesian Weighted Rate - The average number of votes of all resources - The average rating of all resources’ ratings - The number of votes for this resource - The rating of this resource Final formula:
  13. 13. Expertise Calculation
  14. 14. EC – Weighted Expertise Value <ul><li>Separately calculated for each domain and user </li></ul><ul><li>Based on: </li></ul><ul><ul><li>BWR for each resource </li></ul></ul><ul><ul><li>Number of rates for that resource </li></ul></ul><ul><ul><li>Mutiple Domain factor </li></ul></ul><ul><li>Rating scale normalization </li></ul>
  15. 15. EC – Final expertise calculation <ul><li>EXP value is used for User Weight calculation </li></ul><ul><li>EXP strongly depends on WEV </li></ul><ul><li>WEV recalculation in case of new rates </li></ul><ul><li>Parameter α for amateurs (no published resources) </li></ul>
  16. 16. Expertise propagation
  17. 17. Expertise propagation – step 1
  18. 18. Expertise propagation – step 2
  19. 19. Expertise propagation – step 3
  20. 20. Summary <ul><li>Implementation in progress </li></ul><ul><li>Integration with MarcOnt Portal </li></ul><ul><li>Masters Thesis </li></ul><ul><li>Publication </li></ul><ul><ul><li>DERILion Deliverable D1.6.3 - Real-life Rating Algorithm </li></ul></ul><ul><li>Thank you. </li></ul>

×