Smart Energy @ Home - a project that lives by data

  • 235 views
Uploaded on

An exciting project called 'Smart Energy @ Home' is underway in the Danish municipality of Middelfart, where access to data - including public data - plays a key role.

An exciting project called 'Smart Energy @ Home' is underway in the Danish municipality of Middelfart, where access to data - including public data - plays a key role.

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
235
On Slideshare
0
From Embeds
0
Number of Embeds
2

Actions

Shares
Downloads
6
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Smart  Energy  @  Home  -­‐  a  project  that  lives  by  data    An  exciting  project  called  Smart  Energy  @  Home  is  underway  in  the  Danish  municipality  of  Middelfart,  where  access  to  data  -­‐  including  public  data  -­‐  plays  a  key  role.      The  focus  of  the  project  is  to  develop  scalable  methods  to  help  homeowners  save  energy  without  sacrificing  comfort.  This  is  done  by  examining  how  much  energy  2-­‐300  homes  can  save  by  installing  intelligent  energy  management  and  receive  remote  counseling.    Background  Denmark  has  a  political  target  that  electricity  and  heat  in  2035  will  be  produced  with  100  %  renewable  energy.  In  this  context,  it  is  a  base  assumption  that  the  total  requirement  for  heating  -­‐  in  spite  of  new  buildings  -­‐  must  be  cut  in  half  by  2050.    But  even  if  we  look  twenty  years  ahead  from  now  more  than  70%  of  the  building  stock  will  consist  of  homes  that  are  already  built  today.  These  buildings  have  a  much  higher  consumption  energy  than  the  buildings  that  we  build  today  and  that  will  be  built  in  the  future.  It  is  therefore  in  the  established  housing  the  largest  energy  savings  are  to  be  realized  in  order  to  achieve  the  goal  of  full  phase-­‐out  of  fossil  fuels.      
  • 2. The  Danish  Building  Research  Institute  has  estimated  that  200  billion  Danish  kroner  must  be  invested  to  halve  heat  consumption  in  existing  buildings.    To  nudge  homeowners  volunteer  to  make  the  necessary  investments  in  order  to  halve  energy  consumption  for  heating  there  is  a  need  for  very  active  and  educational  counseling  and  a  wide  range  of  credible  energy  efficiency  services  offerings.    Against  this  background,  the  project  goal  is  to  develop  and  demonstrate  new  concepts  and  offers  to  homeowners  which  proves  that  smart  energy  in  the  home  for  the  measurement  and  control  of  heating  systems  in  combination  with  a  resource  efficient  customer  dialogue  and  counseling  to  homeowners  provides:   • Verifiable  and  sustained  "automatic"  savings  and   • Activate  homeowners  and  increases  their  desire  to  change  consumption   behavior  and  implement  new  energy  investments.    Intelligent  energy  management  The  home  automation  system  used  in  the  project  is  called  PassivLiving  and  is  developed  by  PassivSystems,  a  leader  in  energy  optimization  of  private  homes.  PassivLiving  lowers  the  temperature  in  the  house  when  the  occupants  are  not  at  home  during  the  day,  when  they  are  on  vacation,  or  when  they  go  to  bed.  And  the  system  also  ensures  that  the  temperature  is  turned  up  again  when  needed.    In  contrast  to  standard  time  control  of  heating  systems  the  residents  do  not  have  to  guess  how  many  hours  the  heating  systems  must  be  on  for  their  house  to  reach  the  desired  temperature,  when  they  get  up  in  the  morning  and  come  home  in  the  afternoon.  This  adjusts  PassivLiving  itself,  so  all  that’s  needed  is  to  specify  the  temperature  desired  in  the  house  at  which  time.  PassivLiving  is  being  installed  in  2-­‐300  houses  in  Middelfart  municipality.    Remote  counseling  The  remote  counseling  will  try  out  new  IT-­‐based  concepts  for  user  involvement  and  resource-­‐efficient  advice,  where  measurements  and  advanced  algorithms  provide  energy  advisors  and  homeowners  a  particularly  good  basis  for  assessing  possible  measures  for  energy  optimization  of  the  property.    The  goal  is  to  make  it  better  and  cheaper  than  traditional  energy  consultancy.   • Better  -­‐  because  there  is  access  to  specific  and  detailed  data  on  the   condition  of  the  building  and  its  dynamic  energy  consumption.   • Cheaper  -­‐  because  there  is  no  requirement  for  an  an  expensive  consultant   to  inspect  the  property  on-­‐site.    From  data  to  value  The  diagram  below  illustrates  the  relationship  between  the  individual  homes,  the  various  data  sources  and  the  remote  counseling  service  in  the  project:    
  • 3.      A  wide  range  of  data  concerning  home  energy  consumption  are  measured,  including   • Energy  input  to  the  home  heating  system  (remotely  read  in  conjunction   with  the  relevant  utility  where  possible)   • Amount  of  heating  water  produced   • Hot  water  consumption   • The  homes  temperature      These  measurement  data  are  supplemented  by  a  number  of  other  data  that  are  relevant  to  the  home  including   • Weather-­‐measurements  and  forecasts  –  made  available  to  the  project  by   the  Danish  Meteorological  Institute   • Building  and  Housing  Register  (BBR),  public  data  about  building  size,  type   of  accommodation,  historical  energy  consumption,  etc.   • Additional  master  data  for  the  property,  such  as  number  of  occupants  and   their  age,  already  completed  renovations  such  as  window  replacements,   etc.  -­‐  This  data  is  gathered  through  questionnaires  or  from  other   registries    By  combining  these  data  sources  much  useful  information  can  be  derived  about  each  individual  property,  eg   • The  thermal  profile  of  the  house   • The  efficiency  of  the  heating  system  
  • 4. • Key  figures  for  heating  consumption  of  kWh  per  square  meter  and  kWh   per  occupant  and  comparison  with  the  average  for  homes  of  similar  type   • Household  behavior  in  relation  to  family  life,  housing  type,  etc.,  which  can   be  used  to  consider  different  customized  smart  energy  solutions  to   various  segments  of  residents  and  types  of  buildings.   • The  heating  or  cooling  rate  for  the  house,  in  conjunction  with  weather   data    The  last  bullet  can  give  specific  information  about  which  parts  of  the  house  that  can  benefit  from  forms  of  insulation  –  for  example  if  it  is  determined  that  the  house  is  cooling  faster  than  usual  by  strong  easterly  winds,  it  appears  beneficial  to  insulate  the  cavity  wall  or  replace  the  windows  on  the  east  side  of  the  house.    Similarly,  knowledge  of  the  heating  rate  by  sunlight  combined  with  weather  forecasts  can  be  used  to  control  heating  -­‐  so  the  heat  production  is  turned  down  when  there  is  a  prospect  of  sunshine.    The  above  examples  provide  a  good  illustration  of  the  possibilities  that  arise  from  being  able  to  combine  different  detailed  data  sources  with  an  hourly  or  daily  granularity.    Note  -­‐  this  is  not  just  interesting  knowledge,  this  is  information  that  motivates  and  provides  actionable  knowledge  to  homeowners  about  what  kind  of  improvements  and  behavioral  changes  that  can  reduce  energy  consumption  in  the  home  of  this  individual  home  owner.    In  the  above  example,  access  to  public  data  in  the  form  of  weather  reports  and  forecasts  is  critical  to  provide  the  necessary  basis  for  cost-­‐effective  decision  making.    Similarly,  there  are  many  other  public  data  sources  such  as  the  BBR  registry  and  other  registry  information  which  in  conjunction  with  easy  access  to  home  consumption  data,  enables  the  creation  of  new  innovative  greentech  solutions.    The  ‘smart  energy  @  home’  project  kicked  off  in  2012  and  will  run  through  three  heating  seasons  until  2015.  The  project  is  made  possible  through  a  grant  from  Realdania  -­‐  a  philantropic  association  supporting  projects  in  the  built  environment  –  and  supplemented  by  investment  from  the  project  partners  in  terms  of  hours  and/or  money.  The  project  partners  are  beyond  Realdania:   • Middelfart  Municipality,  pursuing  an  ambitious  strategy  for  green  growth   • PassivSystems  provides  the  leading  edge  home  automation  system  used   • Bolius  –  The  homeowners  Knowledge  Center  is  responsible  for  for  the   remote  counseling  and  ongoing  knowledge  transfer  to  the  participating   homeowners   • Danish  Building  Research  Institute  (SBi)  process  and  analyze  the  data   collected    in  the  project  from  a  research  perspective.    You  can  read  more  –  in  Danish  –  about  smart  energy  @  home  at  www.seih.dk  
  • 5.  Ansvarlig:  Søren  Peter  Nielsen  Publiceret:  08.01.2013  http://digitaliser.dk/resource/2432118