Consumerization & Predictive Analytics

1,376 views

Published on

Presentation by Khun Supachai (ATCI) "Tech Trends 2012" on Jan 26, 2012

Published in: Technology, Economy & Finance
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,376
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
143
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Consumerization & Predictive Analytics

  1. 1. “The  Associa+on  of  Thai  ICT  Industry    “สมาคมอุตสาหกรรมเทคโนโลยีสารสนเทศไทย”   Thailand  Technology  Trend  2012   So;ware  Park  (January  2012)      
  2. 2. Thailand     Technology  Trend  2012    -­‐  Consumeriza+on  -­‐  Predic+ve  Analy+c  
  3. 3. Consumeriza+on  •  IT  that  emerges  first  in  “CONSUMER”  market   then  into  “BUSINESS  Organiza+on”  •  Home  based  IT  equipment/services  are  more   capable/less  expensive  than  that  of  the   workplace  •  Popularized  by  Douglas  Neal  and  John  Taylor   (Computer  Science  Corp)  in  2001àDriver  for   web  2.0/Enterprise  2.0  •  BYOD—Bring/Buy  Your  Own  Devices  
  4. 4. What  is  Consumeriza+on  •  Changing  the  Face  of  Work      –  Consumer-­‐based  Social  Media  for  adver+sing        –  Consumer-­‐based  Financial  Services  for  accounts  receivable      –  Use  of  consumer  or  Free  So;ware  for  sustaining  corporate  infrastructure      And…    What  we  are  going  to  focus  on:  •  –  Use  of  personal  equipment  in  the  corporate   environment    •  Source  :  h_p://www.seacliffpartners.com/poraolio/Consumeriza+on1.pdf  (page  5)  
  5. 5. What  to  do?  •  There  is  nothing  to  stop  it...so  let’s  make  the   most  of  it.  •  Comsumeriza+on  of  IT  isn’t  wrong.  •  Consumeriza+on  of  IT  isn’t  a  threat.  •  It’s  about  Growth  of  Technology  in  Society   (not  about  your  IT  Dept)  •  We  need  to  be  OPEN  to  great  tech  ideas  (even   if  it  comes  for  a  simple  user)  
  6. 6. What  we  shouldn’t  be  doing?    •  Not  understanding  of  How  it  eventually  FIT  in   together.  •  Stopped  talking  to  end  users  (who  are  using  IT   doing  their  jobs)  •  Not  seeing  clearly  that  more  people  are  now   more  online,  and  accessible…these  are  the   users  mind  sets.  (Source  :  h_p://www.informa+onweek.com/news/mobility/messaging/229400295)  
  7. 7. Does  your  company  allow  employees  to  use    Personal  Devices  for  work?   ! http://bringyourownit.com/2011/09/26/trend-micro-consumerization-report-2011/
  8. 8. What  Devices/Who  owns/  Who  Support/Responsibili+es   !http://bringyourownit.com/2011/09/26/trend-micro-consumerization-report-2011/
  9. 9. What  Drove  it???  •  Increasing  adop+on  of  Social  Network  by    Customers/Employees.  •  Increasing  use  of    smartphones/tablets.  •  Credible  Public  Cloud    Compu+ng/Saas.    h_p://www.ca.com/~/media/Files/whitepapers/signature-­‐research-­‐idc-­‐whitepaper-­‐final.pdf  
  10. 10. More  about  Consumeriza+on  •  Consumeriza+on  will  stay  •  Shi;  conversa+on  to  “SHARED”  Responsibility  •  Joint-­‐Stewardship  •  What  to  be  careful…   –  Remote  Dele+on  of  personal  data  (MDM  case)   –  Tracking  Individual  loca+on   –  Monitoring  Internet  access    
  11. 11. Bo_om  line  are  •  Change  of  Business  planningàmore  driven  by   Consumers  (Empowered  End  Users)  •  More  +me  doing  workàResults  differs   (produc+vity)  •  Blended  of  life  (Work/Play  Blurred)  •  Break  Organiza+on  Barriers  •  Promote  user  innova+ons  •  BIG  Driver  to  the  Cloud  Services  
  12. 12. Challenges  •  Lost  Control  •  Confused  •  Social  Networking   –  What  level  are  allowed?   –  Which  one  serves  Business?   –  Behavior  of  collabora+on  changes  •  Applica+ons   –  What  (consumer)  apps  are  being  used?   –  What  are  the  concerns?  •  Security  
  13. 13. Consumerize  IT?  
  14. 14. Predic+ve  Analy+cs  •  Variety  of  Sta+s+cal  Techniques   –  Modeling   –  Machine  Learning   –  Data  Mining   –  Game  Theory  •  Analyze  current/historical  facts  and  make   predic+on  about  future  events.  
  15. 15. Predic+ve  Analy+c  Use  in  •  Science  •  Financial  Services  •  Insurance  •  Telecommunica+ons  •  Retail  •  Travel  •  Healthcare    
  16. 16. Impact  from  Predic+ve  Analy+cs  •  CRM    •  Medical  Decisions  •  Payment  analy+cs  (credit  ra+ng)  •  Cross-­‐Sell  •  Reten+on  Program  (Loyalty  Marke+ng)  •  Direct  marke+ng  •  Fraud  Detec+on  
  17. 17. Thank    you  

×