The Data Challenge For Arts Nonprofits: Spreadsheets And Stories

452 views

Published on

Change Management for Nonprofits Facing Demands for Data:
Data is a lively topic in the private and public sectors. In May of last year, the National Endowment for the Arts (NEA) announced that for the first time in its 47-year history grants would be awarded to researchers to investigate the value and impact of the arts using “existing, high-quality data sets.” (NEA Newsroom, May 30, 2012). To date they have awarded $240,000 to 14 projects. Discussion and research are ongoing and resources are proliferating but as technology and methodology evolve so do expectations and standards. Data sets have been (and continue to be) developed and made available to nonprofit groups, as have tools that can be applied to analyze and visualize data to support decision-making and advocacy. However, a nationwide survey of nonprofits conducted in 2012 to investigate their relationships to data uncovered a dichotomy, “…either they were doing a lot with their metrics or not much at all.” (NTEN & Idealware, The State of Nonprofit Data, 2012, p.3). Many of the data sets, research reports, and tools that I have found to support data gathering and analysis would be available to any nonprofits in the survey, which led to my thesis that the adoption of successful data strategies has less to do with the availability of these types of external resources and more to do with internal culture and process. I have investigated strategies used for agile software development and design innovation, models for strategic planning and organizational change management, and principals from leadership theory, the biology of learning and emotional intelligence to propose a framework for thinking about data that can help nonprofit organizations successfully evolve in a data-driven era without undermining the heart or the complexity of their work in the arts and culture sector.

Published in: Business
2 Comments
2 Likes
Statistics
Notes
No Downloads
Views
Total views
452
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
2
Likes
2
Embeds 0
No embeds

No notes for slide

The Data Challenge For Arts Nonprofits: Spreadsheets And Stories

  1. 1. SPREADSHEETS stories+ &
  2. 2. emotions DATA="Fuehlometer" (Feel‐o‐meter) or "Public Face": Julius von Bismarck, Benjamin Maus, and Richard WilhelmerLindau Island, Germany 2010Berlin, Germany 2012‐2013Algorithm created by Frauhenhofer InsHtuteReacHve mechanical sculpture broadcasts the mood of a town by capturing images of ciHzens from cameras in public spaces and analyzing them with an algorithm that equates visual expressions with a happiness level to generate a “feel” average that is reflected by the angle of the mouth and eyes on the light sculpture that reacts in real Hme.richardwilhelmer.com/projects/fuhl‐o‐meter
  3. 3. choice DATA=Invest YYC: City of Calgary, AlbertaCrowd‐funding for local arts projectsLaunched Feb 26, 2013Approx. $400,000 invested to develop custom code base now available as a “white label” soluHon.Partnership with Calgary2012, Alberta FoundaHon for the Arts, Calgary Arts Development and ABT Financial. Calgary Arts Development matched first $50,000 to crowd‐fund over 30 projects in less than 2 months.First local arts crowd‐funding site in the world that offers curated local projects for funding (or volunteering) and tax receipts for local donaHons.DonaHons go to seamlessly through municipality, to Alberta FoundaHon for the Arts, then to the arHst if they reach 60% of their goal. DonaHons for projects that are not funded are issued as credits that can be put toward other projects.www.investyyc.com
  4. 4. care DATA=Improving Care with Data:Seaale Children’s HospitalImplemenHng IBM PureData™ System for AnalyHcs to provide leading edge care based on real‐Hme paHent data and innovaHvetreatment with up‐to‐dateinformaHon on outcomes for specific intervenHons.PaHent spaces in newest hospital building designed with input from therapists and specialists from a range of backgrounds to opHmize healing.www.brightlightconsulHng.com/clients/client‐stories/seaale‐childrens‐hospital
  5. 5. place DATA=CultureBlocks: Philadelphia, PAResearch 2009‐2012Public site launched April 30, 2013Office of Arts, Culture & CreaHve Economyw/ collaboraHon from SIAPfunding from NEA, Our Town, ArtPlaceData sets from local and naHonal sources.Census, SIAP, SEPTA, City of Philadelphia, NEA, School District, NaHonal Register of Historic Places, and more... Free public access. Layered, filtered, custom maps + reports.www.cultureblocks.com
  6. 6. connection DATA=Hole in Space: Kit Galloway, Kit & Sherrie RabinowitzLos Angeles / New York, November 1980Funded by The Broadway Department Store, NEA, other private sponsors.Public CommunicaHon Sculpture at Lincoln Center, NYC and Century City, LA for three 3 days.No signage, explanaHon or sponsor logos.With image and audio thousands were able to spontaneously connect with others across the country.People gathered and made plans to meet. Word spread. Some saw family or friends for the first Hme in years.www.youtube.com/watch?v=QSMVtE1QjaUPhotography | © Galloway, Kit; Rabinowitz, Sherrie
  7. 7. sharing=DATASplash: Seaale, WAWorking with local organizaHons to build capacity to provide clean water to children in China, Cambodia, Ethiopia, Nepal, India, Thailand, Vietnam.Established in 2007 and growing.MulH‐year financials available in friendly data visualizaHonsand PDF downloads.NarraHves, photography, illustraHon and animaHon combined to tell compelling personal stories about individuals being helped.splash.org/achildsright
  8. 8. proof DATA=Proving.it: SplashSeaale, WAWorking with local organizaHons to build capacity to provide clean water to children in China, Cambodia, Ethiopia, Nepal, India, Thailand, Vietnam.Established in 2007 and growing.Online mapping and reporHng to document over 700 clean water projects in 7 countries. Striving to provide transparency about status of specific projects for sponsors, stakeholders, and to support organizaHonal learning and conHnuous improvement.www.proving.it
  9. 9. life DATA=Social Progress IndexLaunched April 11, 2013Skoll World Forum, Oxford UKCreated by Michael Porter (Harvard Business School) as an alternaHve to ranking on GDP. Social Progress Capacity Index in development.Data from World Bank, the World Health OrganizaHon, and other sources used to rank countries on 50 indicators (outputs not inputs) related to human needs and foundaHons of well‐being to spark discussion on naHonal prioriHes and guide social investment decisions.Network of partners in 50 countries. Goal to grow to at least 120 countries.www.socialprogressimperaHve.org
  10. 10. strategy DATA=Experience Music ProjectTRG Case Study, Seaale WAEMP engaged TRG to consulton data processes and strategyin spring of 2011Admissions revenue increased $1.5 million in two years—up 37%.Per Hcket revenue up 27% since 2010.Improved markeHng ROI: 11% average monthly cost‐of‐sale, down from 16%.Online Hcket purchases up from 1% to 22% and growing in 2013.Patron data captures have tripled.hap://www.trgarts.comhap://www.empmuseum.org
  11. 11. 5 exabytes every 2 days*DATA =*enough to fill a stack of CDs that reach past the moon
  12. 12. NTEN, The State of Nonprofit Data, p.14 (2012)DATA challenges are NOT NEW challenges
  13. 13. WE COLLECT IT but WE DON’T USE ITNTEN, The State of Nonprofit Data, p.14 (2012)
  14. 14. Adapted from McKinsey & Co.70% of CHANGE projects FAIL
  15. 15. Source:  Adapted from Change ConsulHng Associates, and William Bridges, Managing Transi7onsPRODUCTIVITYTIMETRANSITIONBEGIN ENDAttentivenessComprehensionUndertakeCommitTRANSITIONBEGINENDIMPLEMENTATIONIDEAOUTCOMEIdealized ConceptLogical PlanEmotional ProcessCHANGE = PROCESS of TRANSITION
  16. 16. David Poole “The Impact of New Technologies on the Arts” (2013)SENSE MAKING IS NEEDED
  17. 17. Adapted from Gartner, Inc. (1995)WHAT HAPPENS AFTER THE HYPE?
  18. 18. { lesson no. 1 }DATA does not equal ANSWERS
  19. 19. “ere is nothing worse than a sharpimage of a fuzzy concept.”—Ansel Adams quoted by Ann Markusen: “Fuzzy Indicators, Proxy Data,” Createquity.com  (11‐09‐2012)
  20. 20. BE WARY of TIDY METRICSfor COMPLEX PROBLEMSINDICATORS = cutting CUBES out of CLOUDS
  21. 21. REALITY = ENGAGING COMPLEXITYAMBIGUITY is more INCLUSIVE+ leads to NEW IDEAS
  22. 22. “As we proceed towards profit & progresswith data, let us encourage artists,novelists, performers & poets to takean active role in the conversation.”—Jer orpNew York Times Data Artist in Residence“Big data is not the new oil,” HBR blog (2012)
  23. 23.  The Names Arrangement by Jer Thorp. Photo source hap://blog.blprnt.com/blog/blprnt/all‐the‐names2,982 names + 1,200 adjacency requestsTHE NAMES ARRANGEMENTalgorithm by Jer Thorp
  24. 24. 9/11 Memorial by architect Michael Arad. Photo source whitehouse.gov REFLECTING ABSENCE9/11 memorial by Michael Arad
  25. 25. TALENTS for THE ROBOTIC AGE:WHAT HUMANS can BRING to the TABLEMarty Neumeier (2012)
  26. 26. “Adopt a humble attitude andlook at the problem oma number of perspectives.”—Marty Neumeier Metaskills: Five Talents for the Robo7c Age (2012)
  27. 27. Edward De Bono, Six Thinking Hats (1985)TRY DIFFERENT HATS
  28. 28. Edward De Bono, Six Thinking Hats (1985)MORE BRAINS ARE BETTER THAN ONE
  29. 29. { lesson no. 2 }SYSTEMS shape OUTCOMES
  30. 30. ACTIONS exist in a COMPLEX ECOSYSTEMAdapted from the Monitor InsHtute (2013) with thanks to Kevin Hughes (2012)*nothing happens without people?= DATA*
  31. 31. System Map with mulHpliers from the NEA’s How Art Works 5‐year research agenda p.14  (2012)CONSIDER INDIRECT FORCES
  32. 32. Thinking In Systems: A Primer (2008)WE GET WHAT WE ASK FOR“Systems, like the three wishes ina fairy tale have a terrible tendencyto produce exactly & only whatyou ask them to produce.”—Dana Meadows
  33. 33. METRICS = OUTCOMESbut do better test results = better learning?(not so far)
  34. 34. { lesson no. 3 }MEASURE what MATTERS
  35. 35. good**see next slideASKQUESTIONSSHARELISTEN+++RESPOND[ h o w ? ]
  36. 36. “Virtuous Loop” concept: Bright Light ConsulHng (2013)(THINK + ACT + OBSERVE) x infinity= CONTINUOUS LEARNING
  37. 37. Tenet of “good clinical research” cited by The Lancet, leading medical journalANSWER IT RELIABLY&ASK AN IMPORTANT QUESTIONGOOD CLINICAL RESEARCH
  38. 38. *Annabel Beerel, Leadership and Change Management (2009)ANSWER IT RELIABLYASK AN IMPORTANT QUESTIONwhat will you change?responsively&GOOD ARTS LEADERSHIP
  39. 39. Monitor Ins7tute  (2012)EXPERIMENT, THINK BIG, COLLABORATE
  40. 40. USE DATA TO SUPPORT ARTS!
  41. 41. Adapted from Change ConsulHng Associates, Kubler‐Ross, On Death and Dying, Conner, Managing at the Speed of Change and IMA, Inc. TIMEPassiveActiveImmobilizationDenialResponse: avoid confrontation,strengthen relationship, focus onsmaller/first stepsAngerBargainingResponse: legitimize — angercomes from loss of control, don’ttake personally, listenResponse: don’t (will redefine thechange), “there can be no deal”ExplorationResponse: test new options, acknowledgeprogress, build confidenceAcceptanceResponse: reward and acknowledge progress,identify lessons learned, prepare for new changeDepressionResponse: provide support, note resources available,encourage responsibility, reframe to testEMOTIONALINTENSITYHOPENegative Change ReactionQ: must leaders manage individualtransition through the grief cycle?CHANGE = LOSS
  42. 42. A: only if they are dying!In longitudinal studies onloss, nearly 50% of thepopulation report nodebilitating grief at all.Another 20% recover ontheir own with no lastingdebilitation.Only 1/3 of the populationis debilitated by loss.Research by George Bonanno 2002‐2012 cited by Andrew Zolli CHANGE = LIFE
  43. 43. Adapted from James Zull, The Art of Changing the Brain, p. 57 (2002)CHANGE = FEAR PLEASURE&
  44. 44. “People actually like change.ey just don’t like to BE changed.”—Marty Neumeier Metaskills: Five Talents for the Robo7c Age (2012)
  45. 45. thank youSnow DowdArts Leadership MFASeattle University 2013snow@theMAKERS.comSPREADSHEETS stories+ &

×